logo

Clonar um gráfico não direcionado

Experimente no GfG Practice Clonar um gráfico não direcionado' title=

Dado um  gráfico não direcionado conectado  representado pela lista de adjacências  listadj[][]  com  nós e  eu  arestas com cada nó tendo um  rótulo distinto  de  0 a n-1 e cada adj[i] representa a lista de vértices conectados ao vértice i.

Crie um  clone  do gráfico onde cada nó do gráfico contém um número inteiro  valor  e uma matriz ( vizinhos ) de nós   contendo nós adjacentes ao nó atual.



classe Nó {
val: inteiro
vizinhos: Lista[Nó]
}

Sua tarefa é clonar o gráfico fornecido e retornar uma referência ao gráfico clonado.

Observação: Se você retornar uma cópia correta do gráfico fornecido, a saída será verdadeira; caso contrário, se a cópia estiver incorreta, será impressa falsa.



Exemplos

Entrada: n = 4 listadj[][] = [[1 2] [0 2] [0 1 3] [2]]
Saída: verdadeiro
Explicação:
Clonar um gráfico não direcionado
Como o gráfico clonado é idêntico ao original, a saída será verdadeira.

Entrada: n = 3 listadj[][] = [[1 2] [0] [0]]
Saída: verdadeiro
Explicação:
Como o gráfico clonado é idêntico ao original, a saída será verdadeira.



Índice

Por que precisamos rastrear os nós visitados/clonados?

Precisamos rastrear nós visitados ou clonados para evitar recursão infinita e trabalho redundante ao clonar um gráfico. Como os gráficos podem conter ciclos (onde um nó pode apontar de volta para um nó visitado anteriormente), sem rastrear os nós que já clonamos, a função de clonagem revisitaria indefinidamente os mesmos nós, resultando em um estouro de pilha ou duplicação incorreta.

Como acompanhar os nós visitados/clonados?

Um HashMap/Map é necessário para manter todos os nós que já foram criados. Lojas-chave : Referência/Endereço do Nó original Lojas de valor : Referência/Endereço do nó clonado Foi feita uma cópia de todos os nós do gráfico.

Como conectar nós clones?

Ao visitar os vértices vizinhos de um em obtenha o clonado correspondente para você vamos chamar assim EM agora visite todos os nós vizinhos para em e para cada vizinho encontre o nó clone correspondente (se não for encontrado, crie um) e, em seguida, empurre para o vetor vizinho de EM nó. 

Como verificar se o gráfico clonado está correto?

Execute uma travessia BFS no gráfico original antes da clonagem e novamente no gráfico clonado após a conclusão da clonagem. Durante cada travessia imprima o valor de cada nó junto com seu endereço (ou referência). Para verificar a exatidão da clonagem compare a ordem dos nós visitados em ambas as travessias. Se os valores dos nós aparecerem na mesma ordem, mas seus endereços (ou referências) forem diferentes, isso confirma que o gráfico foi clonado corretamente e com sucesso.

Explorar como clonar um gráfico não direcionado, incluindo gráficos com vários componentes conectados usando BFS ou DFS para garantir uma cópia profunda completa de todos os nós e arestas.

[Abordagem 1] Usando travessia BFS - Tempo O(V+E) e Espaço O(V)

Na abordagem BFS, o gráfico é clonado iterativamente usando uma fila. Começamos clonando o nó inicial e colocando-o na fila. À medida que processamos cada nó da fila, visitamos seus vizinhos. Se um vizinho ainda não foi clonado, criamos um clone, armazenamos-o em um mapa e o enfileiramos para processamento posterior. Em seguida, adicionamos o clone do vizinho à lista de vizinhos do clone do nó atual. Este processo continua nível por nível, garantindo que todos os nós sejam visitados em ordem de amplitude. O BFS é particularmente útil para evitar recursão profunda e lidar com gráficos grandes ou largos de forma eficiente.

C++
#include    #include  #include  #include  using namespace std; // Definition for a Node struct Node {  int val;  vector<Node*> neighbors; }; // Clone the graph  Node* cloneGraph(Node* node) {  if (!node) return nullptr;  map<Node* Node*> mp;  queue<Node*> q;    // Clone the source node  Node* clone = new Node();  clone->val = node->val;  mp[node] = clone;  q.push(node);  while (!q.empty()) {  Node* u = q.front();  q.pop();  for (auto neighbor : u->neighbors) {    // Clone neighbor if not already cloned  if (mp.find(neighbor) == mp.end()) {  Node* neighborClone = new Node();  neighborClone->val = neighbor->val;  mp[neighbor] = neighborClone;  q.push(neighbor);  }  // Link clone of neighbor to clone of current node  mp[u]->neighbors.push_back(mp[neighbor]);  }  }  return mp[node]; } // Build graph Node* buildGraph() {  Node* node1 = new Node(); node1->val = 0;  Node* node2 = new Node(); node2->val = 1;  Node* node3 = new Node(); node3->val = 2;  Node* node4 = new Node(); node4->val = 3;  node1->neighbors = {node2 node3};  node2->neighbors = {node1 node3};  node3->neighbors = {node1 node2 node4};  node4->neighbors = {node3};  return node1; }   // Compare two graphs for structural and value equality bool compareGraphs(Node* node1 Node* node2   map<Node* Node*>& visited) {  if (!node1 || !node2)   return node1 == node2;    if (node1->val != node2->val || node1 == node2)  return false;  visited[node1] = node2;  if (node1->neighbors.size() != node2->neighbors.size())   return false;  for (size_t i = 0; i < node1->neighbors.size(); ++i) {  Node* n1 = node1->neighbors[i];  Node* n2 = node2->neighbors[i];  if (visited.count(n1)) {  if (visited[n1] != n2)   return false;  } else {  if (!compareGraphs(n1 n2 visited))  return false;  }  }  return true; } // Driver Code int main() {  Node* original = buildGraph();  Node* cloned = cloneGraph(original);  map<Node* Node*> visited;  cout << (compareGraphs(original cloned visited) ?   'true' : 'false') << endl;  return 0; } 
Java
import java.util.*; // Definition for a Node class Node {  public int val;  public ArrayList<Node> neighbors;  public Node() {  neighbors = new ArrayList<>();  }  public Node(int val) {  this.val = val;  neighbors = new ArrayList<>();  } } public class GfG {  // Clone the graph  public static Node cloneGraph(Node node) {  if (node == null) return null;  Map<Node Node> mp = new HashMap<>();  Queue<Node> q = new LinkedList<>();  // Clone the starting node  Node clone = new Node(node.val);  mp.put(node clone);  q.offer(node);  while (!q.isEmpty()) {  Node current = q.poll();  for (Node neighbor : current.neighbors) {  // Clone neighbor if it hasn't been cloned yet  if (!mp.containsKey(neighbor)) {  mp.put(neighbor new Node(neighbor.val));  q.offer(neighbor);  }  // Add the clone of the neighbor to the current node's clone  mp.get(current).neighbors.add(mp.get(neighbor));  }  }  return mp.get(node);  }  // Build graph  public static Node buildGraph() {  Node node1 = new Node(0);  Node node2 = new Node(1);  Node node3 = new Node(2);  Node node4 = new Node(3);  node1.neighbors.addAll(new ArrayList<>  (Arrays.asList(node2 node3)));  node2.neighbors.addAll(new ArrayList<>  (Arrays.asList(node1 node3)));  node3.neighbors.addAll(new ArrayList<>  (Arrays.asList(node1 node2 node4)));  node4.neighbors.addAll(new ArrayList<>  (Arrays.asList(node3)));  return node1;  }  // Compare two graphs for structure and value  public static boolean compareGraphs(Node n1 Node n2   HashMap<Node Node> visited) {  if (n1 == null || n2 == null)  return n1 == n2;  if (n1.val != n2.val || n1 == n2)  return false;  visited.put(n1 n2);  if (n1.neighbors.size() != n2.neighbors.size())  return false;  for (int i = 0; i < n1.neighbors.size(); i++) {  Node neighbor1 = n1.neighbors.get(i);  Node neighbor2 = n2.neighbors.get(i);  if (visited.containsKey(neighbor1)) {  if (visited.get(neighbor1) != neighbor2)  return false;  } else {  if (!compareGraphs(neighbor1 neighbor2 visited))  return false;  }  }  return true;  }  public static void main(String[] args) {  Node original = buildGraph();  Node cloned = cloneGraph(original);  boolean isEqual = compareGraphs(original cloned  new HashMap<>());  System.out.println(isEqual ? 'true' : 'false');  } } 
Python
from collections import deque # Definition for a Node class Node: def __init__(self val=0): self.val = val self.neighbors = [] # Clone the graph def cloneGraph(node): if not node: return None # Map to hold original nodes as keys and their clones as values mp = {} # Initialize BFS queue q = deque([node]) # Clone the starting node mp[node] = Node(node.val) while q: current = q.popleft() for neighbor in current.neighbors: # If neighbor not cloned yet if neighbor not in mp: mp[neighbor] = Node(neighbor.val) q.append(neighbor) # Link clone of neighbor to the clone of the current node mp[current].neighbors.append(mp[neighbor]) return mp[node] # Build graph def buildGraph(): node1 = Node(0) node2 = Node(1) node3 = Node(2) node4 = Node(3) node1.neighbors = [node2 node3] node2.neighbors = [node1 node3] node3.neighbors = [node1 node2 node4] node4.neighbors = [node3] return node1 # Compare two graphs structurally and by values def compareGraphs(n1 n2 visited): if not n1 or not n2: return n1 == n2 if n1.val != n2.val or n1 is n2: return False visited[n1] = n2 if len(n1.neighbors) != len(n2.neighbors): return False for i in range(len(n1.neighbors)): neighbor1 = n1.neighbors[i] neighbor2 = n2.neighbors[i] if neighbor1 in visited: if visited[neighbor1] != neighbor2: return False else: if not compareGraphs(neighbor1 neighbor2 visited): return False return True # Driver if __name__ == '__main__': original = buildGraph() cloned = cloneGraph(original) result = compareGraphs(original cloned {}) print('true' if result else 'false') 
C#
using System; using System.Collections.Generic; // Definition for a Node public class Node {  public int val;  public List<Node> neighbors;  public Node() {  neighbors = new List<Node>();  }  public Node(int val) {  this.val = val;  neighbors = new List<Node>();  } } class GfG {    // Clone the graph   public static Node CloneGraph(Node node) {  if (node == null)   return null;  var mp = new Dictionary<Node Node>();  var q = new Queue<Node>();  // Clone the starting node  var clone = new Node(node.val);  mp[node] = clone;  q.Enqueue(node);  while (q.Count > 0) {  var current = q.Dequeue();  foreach (var neighbor in current.neighbors) {  // If neighbor not cloned clone it and enqueue  if (!mp.ContainsKey(neighbor)) {  mp[neighbor] = new Node(neighbor.val);  q.Enqueue(neighbor);  }  // Add clone of neighbor to clone of current  mp[current].neighbors.Add(mp[neighbor]);  }  }  return mp[node];  }  // Build graph  public static Node BuildGraph() {  var node1 = new Node(0);  var node2 = new Node(1);  var node3 = new Node(2);  var node4 = new Node(3);  node1.neighbors.AddRange(new[] { node2 node3 });  node2.neighbors.AddRange(new[] { node1 node3 });  node3.neighbors.AddRange(new[] { node1 node2 node4 });  node4.neighbors.AddRange(new[] { node3 });  return node1;  }  // Compare two graphs for structure and value  public static bool CompareGraphs(Node n1 Node n2 Dictionary<Node Node> visited) {  if (n1 == null || n2 == null)   return n1 == n2;    if (n1.val != n2.val || ReferenceEquals(n1 n2))   return false;  visited[n1] = n2;  if (n1.neighbors.Count != n2.neighbors.Count)   return false;  for (int i = 0; i < n1.neighbors.Count; i++) {  var neighbor1 = n1.neighbors[i];  var neighbor2 = n2.neighbors[i];  if (visited.ContainsKey(neighbor1)) {  if (!ReferenceEquals(visited[neighbor1] neighbor2))   return false;  } else {  if (!CompareGraphs(neighbor1 neighbor2 visited))  return false;  }  }  return true;  }  public static void Main() {  var original = BuildGraph();  var cloned = CloneGraph(original);  var visited = new Dictionary<Node Node>();  Console.WriteLine(CompareGraphs(original cloned visited)   ? 'true' : 'false');  } } 
JavaScript
// Definition for a Node class Node {  constructor(val = 0) {  this.val = val;  this.neighbors = [];  } } // Clone the graph function cloneGraph(node) {  if (!node) return null;  const mp = new Map();  const q = [node];  // Clone the initial node  mp.set(node new Node(node.val));  while (q.length > 0) {  const current = q.shift();  for (const neighbor of current.neighbors) {  if (!mp.has(neighbor)) {  mp.set(neighbor new Node(neighbor.val));  q.push(neighbor);  }  // Link clone of neighbor to clone of current  mp.get(current).neighbors.push(mp.get(neighbor));  }  }  return mp.get(node); } // Build graph function buildGraph() {  const node1 = new Node(0);  const node2 = new Node(1);  const node3 = new Node(2);  const node4 = new Node(3);  node1.neighbors = [node2 node3];  node2.neighbors = [node1 node3];  node3.neighbors = [node1 node2 node4];  node4.neighbors = [node3];  return node1; } // Compare two graphs structurally and by value function compareGraphs(n1 n2 visited = new Map()) {  if (!n1 || !n2)   return n1 === n2;    if (n1.val !== n2.val || n1 === n2)   return false;  visited.set(n1 n2);  if (n1.neighbors.length !== n2.neighbors.length)   return false;  for (let i = 0; i < n1.neighbors.length; i++) {  const neighbor1 = n1.neighbors[i];  const neighbor2 = n2.neighbors[i];  if (visited.has(neighbor1)) {  if (visited.get(neighbor1) !== neighbor2)   return false;    } else {  if (!compareGraphs(neighbor1 neighbor2 visited))  return false;    }  }  return true; } // Driver const original = buildGraph(); const cloned = cloneGraph(original); const result = compareGraphs(original cloned); console.log(result ? 'true' : 'false'); 

Saída
true 

[Abordagem 2] Usando travessia DFS - Tempo O(V+E) e Espaço O(V)

Na abordagem DFS, o gráfico é clonado usando recursão. Começamos a partir de um determinado nó e exploramos o máximo possível ao longo de cada ramificação antes de retroceder. Um mapa (ou dicionário) é usado para rastrear nós já clonados para evitar o processamento do mesmo nó várias vezes e para lidar com ciclos. Quando encontramos um nó pela primeira vez, criamos um clone dele e o armazenamos no mapa. Então, para cada vizinho desse nó, nós o clonamos recursivamente e adicionamos o vizinho clonado ao clone do nó atual. Isso garante que todos os nós sejam visitados profundamente antes de retornar e que a estrutura do gráfico seja copiada fielmente.

C++
#include    #include  #include  #include  using namespace std; // Definition for a Node struct Node {  int val;  vector<Node*> neighbors; }; // Map to hold original node to its copy unordered_map<Node* Node*> copies; // Function to clone the graph  Node* cloneGraph(Node* node) {    // If the node is NULL return NULL  if (!node) return NULL;  // If node is not yet cloned clone it  if (copies.find(node) == copies.end()) {  Node* clone = new Node();  clone->val = node->val;  copies[node] = clone;  // Recursively clone neighbors  for (Node* neighbor : node->neighbors) {  clone->neighbors.push_back(cloneGraph(neighbor));  }  }  // Return the clone  return copies[node]; } // Build graph Node* buildGraph() {  Node* node1 = new Node(); node1->val = 0;  Node* node2 = new Node(); node2->val = 1;  Node* node3 = new Node(); node3->val = 2;  Node* node4 = new Node(); node4->val = 3;  node1->neighbors = {node2 node3};  node2->neighbors = {node1 node3};  node3->neighbors = {node1node2 node4};  node4->neighbors = {node3};  return node1; } // Compare two graphs for structural and value equality bool compareGraphs(Node* node1 Node* node2 map<Node* Node*>& visited) {  if (!node1 || !node2)   return node1 == node2;  if (node1->val != node2->val || node1 == node2)  return false;  visited[node1] = node2;  if (node1->neighbors.size() != node2->neighbors.size())   return false;  for (size_t i = 0; i < node1->neighbors.size(); ++i) {  Node* n1 = node1->neighbors[i];  Node* n2 = node2->neighbors[i];  if (visited.count(n1)) {  if (visited[n1] != n2)   return false;  } else {  if (!compareGraphs(n1 n2 visited))  return false;  }  }  return true; } // Driver Code int main() {  Node* original = buildGraph();  // Clone the graph  Node* cloned = cloneGraph(original);  // Compare original and cloned graph  map<Node* Node*> visited;  cout << (compareGraphs(original cloned visited) ?   'true' : 'false') << endl;  return 0; } 
Java
import java.util.*; // Definition for a Node class Node {  int val;  ArrayList<Node> neighbors;  Node() {  neighbors = new ArrayList<>();  }  Node(int val) {  this.val = val;  neighbors = new ArrayList<>();  } } public class GfG {  // Map to hold original node to its copy  static HashMap<Node Node> copies = new HashMap<>();  // Function to clone the graph using DFS  public static Node cloneGraph(Node node) {  // If the node is NULL return NULL  if (node == null) return null;  // If node is not yet cloned clone it  if (!copies.containsKey(node)) {  Node clone = new Node(node.val);  copies.put(node clone);  // Recursively clone neighbors  for (Node neighbor : node.neighbors) {  clone.neighbors.add(cloneGraph(neighbor));  }  }  // Return the clone  return copies.get(node);  }  // Build graph  public static Node buildGraph() {  Node node1 = new Node(0);  Node node2 = new Node(1);  Node node3 = new Node(2);  Node node4 = new Node(3);  node1.neighbors.addAll(Arrays.asList(node2 node3));  node2.neighbors.addAll(Arrays.asList(node1 node3));  node3.neighbors.addAll(Arrays.asList(node1node2 node4));  node4.neighbors.addAll(Arrays.asList(node3));  return node1;  }  // Compare two graphs for structural and value equality  public static boolean compareGraphs(Node node1 Node node2   HashMap<Node Node> visited) {  if (node1 == null || node2 == null)  return node1 == node2;  if (node1.val != node2.val || node1 == node2)  return false;  visited.put(node1 node2);  if (node1.neighbors.size() != node2.neighbors.size())  return false;  for (int i = 0; i < node1.neighbors.size(); i++) {  Node n1 = node1.neighbors.get(i);  Node n2 = node2.neighbors.get(i);  if (visited.containsKey(n1)) {  if (visited.get(n1) != n2)  return false;  } else {  if (!compareGraphs(n1 n2 visited))  return false;  }  }  return true;  }  // Driver Code  public static void main(String[] args) {  Node original = buildGraph();  // Clone the graph  Node cloned = cloneGraph(original);  // Compare original and cloned graph  boolean result = compareGraphs(original cloned new HashMap<>());  System.out.println(result ? 'true' : 'false');  } } 
Python
# Definition for a Node class Node: def __init__(self val=0 neighbors=None): self.val = val self.neighbors = neighbors if neighbors is not None else [] # Map to hold original node to its copy copies = {} # Function to clone the graph  def cloneGraph(node): # If the node is None return None if not node: return None # If node is not yet cloned clone it if node not in copies: # Create a clone of the node clone = Node(node.val) copies[node] = clone # Recursively clone neighbors for neighbor in node.neighbors: clone.neighbors.append(cloneGraph(neighbor)) # Return the clone return copies[node] def buildGraph(): node1 = Node(0) node2 = Node(1) node3 = Node(2) node4 = Node(3) node1.neighbors = [node2 node3] node2.neighbors = [node1 node3] node3.neighbors = [node1 node2 node4] node4.neighbors = [node3] return node1 # Compare two graphs for structural and value equality def compareGraphs(node1 node2 visited): if not node1 or not node2: return node1 == node2 if node1.val != node2.val or node1 is node2: return False visited[node1] = node2 if len(node1.neighbors) != len(node2.neighbors): return False for i in range(len(node1.neighbors)): n1 = node1.neighbors[i] n2 = node2.neighbors[i] if n1 in visited: if visited[n1] != n2: return False else: if not compareGraphs(n1 n2 visited): return False return True # Driver Code if __name__ == '__main__': original = buildGraph() # Clone the graph using DFS cloned = cloneGraph(original) # Compare original and cloned graph visited = {} print('true' if compareGraphs(original cloned visited) else 'false') 
C#
using System; using System.Collections.Generic; public class Node {  public int val;  public List<Node> neighbors;  public Node() {  val = 0;  neighbors = new List<Node>();  }  public Node(int _val) {  val = _val;  neighbors = new List<Node>();  } } class GfG {  // Dictionary to hold original node to its copy  static Dictionary<Node Node> copies = new Dictionary<Node Node>();  // Function to clone the graph using DFS  public static Node CloneGraph(Node node) {  // If the node is NULL return NULL  if (node == null) return null;  // If node is not yet cloned clone it  if (!copies.ContainsKey(node)) {  Node clone = new Node(node.val);  copies[node] = clone;  // Recursively clone neighbors  foreach (Node neighbor in node.neighbors) {  clone.neighbors.Add(CloneGraph(neighbor));  }  }  // Return the clone  return copies[node];  }  // Build graph  public static Node BuildGraph() {  Node node1 = new Node(0);  Node node2 = new Node(1);  Node node3 = new Node(2);  Node node4 = new Node(3);  node1.neighbors.Add(node2);  node1.neighbors.Add(node3);  node2.neighbors.Add(node1);  node2.neighbors.Add(node3);  node3.neighbors.Add(node1);  node3.neighbors.Add(node2);  node3.neighbors.Add(node4);    node4.neighbors.Add(node3);  return node1;  }  // Compare two graphs for structural and value equality  public static bool CompareGraphs(Node node1 Node node2   Dictionary<Node Node> visited) {  if (node1 == null || node2 == null)  return node1 == node2;  if (node1.val != node2.val || node1 == node2)  return false;  visited[node1] = node2;  if (node1.neighbors.Count != node2.neighbors.Count)  return false;  for (int i = 0; i < node1.neighbors.Count; i++) {  Node n1 = node1.neighbors[i];  Node n2 = node2.neighbors[i];  if (visited.ContainsKey(n1)) {  if (visited[n1] != n2)  return false;  } else {  if (!CompareGraphs(n1 n2 visited))  return false;  }  }  return true;  }  // Driver Code  public static void Main() {  Node original = BuildGraph();  // Clone the graph using DFS  Node cloned = CloneGraph(original);  // Compare original and cloned graph  bool isEqual = CompareGraphs(original cloned new  Dictionary<Node Node>());  Console.WriteLine(isEqual ? 'true' : 'false');  } } 
JavaScript
// Definition for a Node class Node {  constructor(val = 0) {  this.val = val;  this.neighbors = [];  } } // Map to hold original node to its copy const copies = new Map(); // Function to clone the graph using DFS function cloneGraph(node) {  // If the node is NULL return NULL  if (node === null) return null;  // If node is not yet cloned clone it  if (!copies.has(node)) {  const clone = new Node(node.val);  copies.set(node clone);  // Recursively clone neighbors  for (let neighbor of node.neighbors) {  clone.neighbors.push(cloneGraph(neighbor));  }  }  // Return the clone  return copies.get(node); } // Build graph function buildGraph() {  const node1 = new Node(0);  const node2 = new Node(1);  const node3 = new Node(2);  const node4 = new Node(3);  node1.neighbors.push(node2 node3);  node2.neighbors.push(node1 node3);  node3.neighbors.push(node1 node2 node4);  node4.neighbors.push(node3);  return node1; } // Compare two graphs for structural and value equality function compareGraphs(node1 node2 visited = new Map()) {  if (!node1 || !node2)  return node1 === node2;  if (node1.val !== node2.val || node1 === node2)  return false;  visited.set(node1 node2);  if (node1.neighbors.length !== node2.neighbors.length)  return false;  for (let i = 0; i < node1.neighbors.length; i++) {  const n1 = node1.neighbors[i];  const n2 = node2.neighbors[i];  if (visited.has(n1)) {  if (visited.get(n1) !== n2)  return false;  } else {  if (!compareGraphs(n1 n2 visited))  return false;  }  }  return true; } // Driver Code const original = buildGraph(); // Clone the graph using DFS const cloned = cloneGraph(original); // Compare original and cloned graph console.log(compareGraphs(original cloned) ? 'true' : 'false'); 

Saída
true