Dadas muitas pilhas de moedas dispostas adjacentemente. Precisamos coletar todas essas moedas no número mínimo de etapas onde em uma única etapa podemos coletar uma linha horizontal de moedas ou uma linha vertical de moedas e as moedas coletadas devem ser contínuas.
Exemplos:
Input : height[] = [2 1 2 5 1] Each value of this array corresponds to the height of stack that is we are given five stack of coins where in first stack 2 coins are there then in second stack 1 coin is there and so on. Output : 4 We can collect all above coins in 4 steps which are shown in below diagram. Each step is shown by different color. First we have collected last horizontal line of coins after which stacks remains as [1 0 1 4 0] after that another horizontal line of coins is collected from stack 3 and 4 then a vertical line from stack 4 and at the end a horizontal line from stack 1. Total steps are 4.
texto datilografado para cada
Podemos resolver este problema usando o método de dividir e conquistar. Podemos ver que é sempre benéfico remover as linhas horizontais de baixo. Suponha que estejamos trabalhando em pilhas do índice l ao índice r em uma etapa de recursão, cada vez que escolhermos a altura mínima, removeremos aquelas muitas linhas horizontais, após as quais a pilha será dividida em duas partes l para o mínimo e o mínimo +1 até r e chamaremos recursivamente nessas submatrizes. Outra coisa é que também podemos coletar moedas usando linhas verticais, então escolheremos o mínimo entre o resultado das chamadas recursivas e (r - l) porque usando (r - l) linhas verticais sempre podemos coletar todas as moedas.
Como cada vez que chamamos cada subarray e encontramos o mínimo dessa complexidade de tempo total da solução será O(N2)
C++
// C++ program to find minimum number of // steps to collect stack of coins #include using namespace std; // recursive method to collect coins from // height array l to r with height h already // collected int minStepsRecur(int height[] int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array int minSteps(int height[] int N) { return minStepsRecur(height 0 N 0); } // Driver code to test above methods int main() { int height[] = { 2 1 2 5 1 }; int N = sizeof(height) / sizeof(int); cout << minSteps(height N) << endl; return 0; }
Java // Java Code to Collect all coins in // minimum number of steps import java.util.*; class GFG { // recursive method to collect coins from // height array l to r with height h already // collected public static int minStepsRecur(int height[] int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array public static int minSteps(int height[] int N) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ public static void main(String[] args) { int height[] = { 2 1 2 5 1 }; int N = height.length; System.out.println(minSteps(height N)); } } // This code is contributed by Arnav Kr. Mandal.
Python 3 # Python 3 program to find # minimum number of steps # to collect stack of coins # recursive method to collect # coins from height array l to # r with height h already # collected def minStepsRecur(height l r h): # if l is more than r # no steps needed if l >= r: return 0; # loop over heights to # get minimum height index m = l for i in range(l r): if height[i] < height[m]: m = i # choose minimum from # 1) collecting coins using # all vertical lines (total r - l) # 2) collecting coins using # lower horizontal lines and # recursively on left and # right segments return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h) # method returns minimum number # of step to collect coin from # stack with height in height[] array def minSteps(height N): return minStepsRecur(height 0 N 0) # Driver code height = [ 2 1 2 5 1 ] N = len(height) print(minSteps(height N)) # This code is contributed # by ChitraNayal
C# // C# Code to Collect all coins in // minimum number of steps using System; class GFG { // recursive method to collect coins from // height array l to r with height h already // collected public static int minStepsRecur(int[] height int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to // get minimum height index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.Min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array public static int minSteps(int[] height int N) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ public static void Main() { int[] height = { 2 1 2 5 1 }; int N = height.Length; Console.Write(minSteps(height N)); } } // This code is contributed by nitin mittal
PHP // PHP program to find minimum number of // steps to collect stack of coins // recursive method to collect // coins from height array l to // r with height h already // collected function minStepsRecur($height $l $r $h) { // if l is more than r // no steps needed if ($l >= $r) return 0; // loop over heights to // get minimum height // index $m = $l; for ($i = $l; $i < $r; $i++) if ($height[$i] < $height[$m]) $m = $i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return min($r - $l minStepsRecur($height $l $m $height[$m]) + minStepsRecur($height $m + 1 $r $height[$m]) + $height[$m] - $h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps($height $N) { return minStepsRecur($height 0 $N 0); } // Driver Code $height = array(2 1 2 5 1); $N = sizeof($height); echo minSteps($height $N) ; // This code is contributed by nitin mittal. ?> JavaScript <script> // Javascript Code to Collect all coins in // minimum number of steps // recursive method to collect coins from // height array l to r with height h already // collected function minStepsRecur(heightlrh) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index let m = l; for (let i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps(heightN) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ let height=[2 1 2 5 1 ]; let N = height.length; document.write(minSteps(height N)); // This code is contributed by avanitrachhadiya2155 </script>
Saída:
4
Complexidade de tempo: A complexidade de tempo deste algoritmo é O(N^2) onde N é o número de elementos na matriz de altura.
Complexidade do espaço: A complexidade espacial deste algoritmo é O(N) devido às chamadas recursivas que são feitas no array de altura.