logo

Algoritmo de Dijkstra

O tutorial a seguir nos ensinará sobre o algoritmo do caminho mais curto de Dijkstra. Compreenderemos o funcionamento do Algoritmo de Dijkstra com uma explicação gráfica passo a passo.

Abordaremos o seguinte:

  • Uma breve visão geral dos conceitos fundamentais do gráfico
  • Entenda o uso do algoritmo de Dijkstra
  • Entenda o funcionamento do algoritmo com um exemplo passo a passo

Então vamos começar.

Uma breve introdução aos gráficos

Gráficos são estruturas de dados não lineares que representam as 'conexões' entre os elementos. Esses elementos são conhecidos como Vértices , e as linhas ou arcos que conectam quaisquer dois vértices no gráfico são conhecidos como Arestas . Mais formalmente, um gráfico compreende um conjunto de vértices (V) e um conjunto de arestas (E) . O gráfico é denotado por G(V, E) .

Componentes de um gráfico

    Vértices:Vértices são as unidades básicas do gráfico usadas para representar objetos, pessoas ou entidades da vida real. Às vezes, os vértices também são conhecidos como nós.Arestas:As arestas são desenhadas ou usadas para conectar dois vértices do gráfico. Às vezes, as arestas também são conhecidas como arcos.

A figura a seguir mostra uma representação gráfica de um gráfico:

Dijkstra

Figura 1: Representação gráfica de um gráfico

Na figura acima, os vértices/nós são denotados com círculos coloridos e as arestas são denotadas com as linhas que conectam os nós.

Aplicações dos Gráficos

Os gráficos são usados ​​para resolver muitos problemas da vida real. Gráficos são utilizados para representar as redes. Essas redes podem incluir redes telefônicas ou de circuitos ou caminhos em uma cidade.

Por exemplo, poderíamos usar Gráficos para projetar um modelo de rede de transporte onde os vértices exibem as instalações que enviam ou recebem os produtos e as arestas representam estradas ou caminhos que as conectam. A seguir está uma representação pictórica do mesmo:

Dijkstra

Figura 2: Representação Pictórica da Rede de Transporte

Os gráficos também são utilizados em diferentes plataformas de mídia social, como LinkedIn, Facebook, Twitter e muito mais. Por exemplo, plataformas como o Facebook utilizam Gráficos para armazenar os dados de seus usuários onde cada pessoa é indicada com um vértice, e cada uma delas é uma estrutura contendo informações como ID da Pessoa, Nome, Gênero, Endereço, etc.

Tipos de gráficos

Os gráficos podem ser categorizados em dois tipos:

  1. Gráfico não direcionado
  2. Gráfico direcionado

Gráfico não direcionado: Um gráfico com arestas que não possuem direção é denominado gráfico não direcionado. As arestas deste gráfico implicam uma relação bidirecional em que cada aresta pode ser percorrida em ambas as direções. A figura a seguir exibe um gráfico simples não direcionado com quatro nós e cinco arestas.

Dijkstra

Figura 3: Um gráfico simples e não direcionado

Gráfico direcionado: Um gráfico com arestas com direção é denominado gráfico direcionado. As arestas deste gráfico implicam um relacionamento unilateral em que cada aresta só pode ser percorrida em uma única direção. A figura a seguir mostra um gráfico direcionado simples com quatro nós e cinco arestas.

Dijkstra

Figura 4: Um gráfico direcionado simples

O comprimento, posição ou orientação absoluta das bordas em uma ilustração gráfica caracteristicamente não tem significado. Em outras palavras, podemos visualizar o mesmo gráfico de maneiras diferentes, reorganizando os vértices ou distorcendo as arestas se a estrutura subjacente do gráfico não se alterar.

O que são gráficos ponderados?

Um gráfico é considerado ponderado se cada aresta receber um 'peso'. O peso de uma aresta pode denotar distância, tempo ou qualquer coisa que modele a 'conexão' entre o par de vértices que ela conecta.

Por exemplo, podemos observar um número azul próximo a cada aresta na figura a seguir do Gráfico Ponderado. Este número é utilizado para indicar o peso da aresta correspondente.

Dijkstra

Figura 5: Um exemplo de gráfico ponderado

Uma introdução ao algoritmo de Dijkstra

Agora que conhecemos alguns conceitos básicos de gráficos, vamos mergulhar na compreensão do conceito do Algoritmo de Dijkstra.

charat java

Já se perguntou como o Google Maps encontra a rota mais curta e rápida entre dois lugares?

Bem, a resposta é Algoritmo de Dijkstra . Algoritmo de Dijkstra é um algoritmo gráfico que encontra o caminho mais curto de um vértice de origem para todos os outros vértices no gráfico (caminho mais curto de origem única). É um tipo de Algoritmo Ganancioso que só funciona em Gráficos Ponderados com pesos positivos. A complexidade de tempo do algoritmo de Dijkstra é O(V2) com a ajuda da representação da matriz de adjacência do gráfico. Esta complexidade de tempo pode ser reduzida a O((V + E)log V) com a ajuda de uma representação de lista de adjacências do grafo, onde EM é o número de vértices e E é o número de arestas no gráfico.

História do Algoritmo de Dijkstra

O Algoritmo de Dijkstra foi projetado e publicado por Dr. Edsger W. Dijkstra , um cientista da computação holandês, engenheiro de software, programador, ensaísta científico e cientista de sistemas.

Durante uma entrevista com Philip L. Frana para a revista Communications of ACM no ano de 2001, o Dr. Edsger W. Dijkstra revelou:

'Qual é o caminho mais curto para viajar de Rotterdam a Groningen, em geral: de determinada cidade para determinada cidade? É o algoritmo do caminho mais curto, que projetei em cerca de vinte minutos. Certa manhã, eu estava fazendo compras em Amsterdã com minha jovem noiva e, cansado, nos sentamos no terraço do café para tomar uma xícara de café e eu estava pensando se conseguiria fazer isso, e então projetei o algoritmo para o caminho mais curto . Como eu disse, foi uma invenção de vinte minutos. Na verdade, foi publicado em 1959, três anos depois. A publicação ainda é legível, é, de fato, muito bonita. Uma das razões pelas quais é tão legal é que eu o projetei sem lápis e papel. Aprendi mais tarde que uma das vantagens de desenhar sem lápis e papel é que você é quase forçado a evitar todas as complexidades evitáveis. Eventualmente, esse algoritmo se tornou, para minha grande surpresa, um dos pilares da minha fama.'

Dijkstra pensou no problema do caminho mais curto enquanto trabalhava como programador no Centro de Matemática de Amsterdã, em 1956, para ilustrar as capacidades de um novo computador conhecido como ARMAC. Seu objetivo era selecionar um problema e uma solução (produzida pelo computador) que pessoas sem experiência em informática pudessem compreender. Ele desenvolveu o algoritmo do caminho mais curto e mais tarde o executou para ARMAC para um mapa de transporte vagamente reduzido de 64 cidades na Holanda (64 cidades, então 6 bits seriam suficientes para codificar o número da cidade). Um ano depois, ele se deparou com outra questão dos engenheiros de hardware que operavam o próximo computador do instituto: minimizar a quantidade de fio necessária para conectar os pinos no painel traseiro da máquina. Como solução, ele redescobriu o algoritmo chamado algoritmo de árvore geradora mínima de Prim e o publicou no ano de 1959.

Fundamentos do Algoritmo de Dijkstra

A seguir estão os conceitos básicos do Algoritmo de Dijkstra:

  1. O algoritmo de Dijkstra começa no nó que selecionamos (o nó de origem) e examina o gráfico para encontrar o caminho mais curto entre esse nó e todos os outros nós do gráfico.
  2. O Algoritmo mantém registros da distância mais curta atualmente reconhecida de cada nó até o nó de origem e atualiza esses valores se encontrar algum caminho mais curto.
  3. Depois que o algoritmo recupera o caminho mais curto entre a origem e outro nó, esse nó é marcado como ‘visitado’ e incluído no caminho.
  4. O procedimento continua até que todos os nós do grafo tenham sido incluídos no caminho. Desta forma, temos um caminho conectando o nó de origem a todos os outros nós, seguindo o caminho mais curto possível para chegar a cada nó.

Compreendendo o funcionamento do algoritmo de Dijkstra

A gráfico e vértice de origem são requisitos para o algoritmo de Dijkstra. Este Algoritmo é estabelecido na Abordagem Greedy e, portanto, encontra a escolha localmente ótima (mínimos locais neste caso) em cada etapa do Algoritmo.

Cada vértice neste algoritmo terá duas propriedades definidas para ele:

  1. Propriedade visitada
  2. Propriedade do caminho

Vamos entender essas propriedades resumidamente.

Imóvel Visitado:

  1. A propriedade ‘visited’ significa se o nó foi visitado ou não.
  2. Estamos usando esta propriedade para não revisitar nenhum nó.
  3. Um nó é marcado como visitado somente quando o caminho mais curto for encontrado.

Propriedade do caminho:

  1. A propriedade 'path' armazena o valor do caminho mínimo atual para o nó.
  2. O caminho mínimo atual implica o caminho mais curto que alcançamos este nó até agora.
  3. Esta propriedade é revisada quando qualquer vizinho do nó é visitado.
  4. Esta propriedade é significativa porque armazenará a resposta final de cada nó.

Inicialmente, marcamos todos os vértices, ou nós, não visitados, pois ainda não foram visitados. O caminho para todos os nós também é definido como infinito, exceto o nó de origem. Além disso, o caminho para o nó de origem é definido como zero (0).

Em seguida, selecionamos o nó de origem e o marcamos como visitado. Depois disso, acessamos todos os nós vizinhos do nó de origem e realizamos o relaxamento em cada nó. Relaxamento é o processo de redução do custo de chegar a um nó com a ajuda de outro nó.

No processo de relaxamento, o caminho de cada nó é revisado para o valor mínimo entre o caminho atual do nó, a soma do caminho para o nó anterior e o caminho do nó anterior para o nó atual.

Suponhamos que p[n] seja o valor do caminho atual para o nó n, p[m] seja o valor do caminho até o nó visitado anteriormente m e w seja o peso da aresta entre o nó atual e um visitado anteriormente (peso da borda entre n e m).

No sentido matemático, o relaxamento pode ser exemplificado como:

p[n] = mínimo(p[n], p[m] + w)

Em seguida, marcamos um nó não visitado com o menor caminho visitado em cada etapa subsequente e atualizamos os caminhos de seu vizinho.

Repetimos este procedimento até que todos os nós do gráfico sejam marcados como visitados.

Sempre que adicionamos um nó ao conjunto visitado, o caminho para todos os seus nós vizinhos também muda de acordo.

Se algum nó ficar inacessível (componente desconectado), seu caminho permanecerá 'infinito'. Caso a própria fonte seja um componente separado, o caminho para todos os outros nós permanece 'infinito'.

Compreendendo o algoritmo de Dijkstra com um exemplo

A seguir está a etapa que seguiremos para implementar o Algoritmo de Dijkstra:

Passo 1: Primeiro, marcaremos o nó de origem com uma distância atual de 0 e definiremos o restante dos nós como INFINITY.

Passo 2: Definiremos então o nó não visitado com a menor distância atual como o nó atual, suponha X.

Etapa 3: Para cada vizinho N do nó atual X: Adicionaremos então a distância atual de X com o peso da aresta que une XN. Se for menor que a distância atual de N, defina-a como a nova distância atual de N.

Passo 4: Marcaremos então o nó atual X como visitado.

Etapa 5: Repetiremos o processo de 'Passo 2' se houver algum nó não visitado no gráfico.

Vamos agora entender a implementação do algoritmo com a ajuda de um exemplo:

Dijkstra

Figura 6: O gráfico fornecido

  1. Usaremos o gráfico acima como entrada, com o nó A como a fonte.
  2. Primeiro, marcaremos todos os nós como não visitados.
  3. Vamos definir o caminho para 0 no nó A e INFINIDADE para todos os outros nós.
  4. Agora marcaremos o nó de origem A conforme visitado e acessar seus nós vizinhos.
    Observação: Acessamos apenas os nós vizinhos, não os visitamos.
  5. Vamos agora atualizar o caminho para o nó B por 4 com a ajuda do relaxamento porque o caminho para o nó A é 0 e o caminho do nó A para B é 4 , e a mínimo((0 + 4), INFINITO) é 4 .
  6. Também atualizaremos o caminho para o nó C por 5 com a ajuda do relaxamento porque o caminho para o nó A é 0 e o caminho do nó A para C é 5 , e a mínimo((0 + 5), INFINITO) é 5 . Ambos os vizinhos do nó A agora estão relaxados; portanto, podemos seguir em frente.
  7. Agora selecionaremos o próximo nó não visitado com o menor caminho e o visitaremos. Portanto, visitaremos o nó B e realizar relaxamento em seus vizinhos não visitados. Depois de realizar o relaxamento, o caminho para o nó C permanecerá 5 , enquanto o caminho para o nó E se tornará onze , e o caminho para o nó D se tornará 13 .
  8. Agora visitaremos o nó E e realizar relaxamento em seus nós vizinhos B, D , e F . Como apenas o nó F não é visitado, será relaxado. Assim, o caminho para o nó B permanecerá como está, ou seja, 4 , o caminho para o nó D também permanecerá 13 , e o caminho para o nó F se tornará 14 (8 + 6) .
  9. Agora visitaremos o nó D , e apenas nó F ficará relaxado. No entanto, o caminho para o nó F permanecerá inalterado, ou seja, 14 .
  10. Como apenas o nó F restante, iremos visitá-lo, mas não realizaremos nenhum relaxamento, pois todos os seus nós vizinhos já foram visitados.
  11. Assim que todos os nós dos gráficos forem visitados, o programa será encerrado.

Portanto, os caminhos finais que concluímos são:

 A = 0 B = 4 (A -> B) C = 5 (A -> C) D = 4 + 9 = 13 (A -> B -> D) E = 5 + 3 = 8 (A -> C -> E) F = 5 + 3 + 6 = 14 (A -> C -> E -> F) 

Pseudocódigo para o algoritmo de Dijkstra

Vamos agora entender um pseudocódigo para o Algoritmo de Dijkstra.

  • Temos que manter um registro da distância do caminho de cada nó. Portanto, podemos armazenar a distância do caminho de cada nó em um array de tamanho n, onde n é o número total de nós.
  • Além disso, queremos recuperar o caminho mais curto juntamente com o comprimento desse caminho. Para superar esse problema, mapearemos cada nó para o nó que atualizou seu comprimento de caminho pela última vez.
  • Assim que o algoritmo for concluído, podemos retroceder do nó de destino até o nó de origem para recuperar o caminho.
  • Podemos usar uma fila de prioridade mínima para recuperar o nó com a menor distância do caminho de forma eficiente.

Vamos agora implementar um pseudocódigo da ilustração acima:

Pseudo-código:

 function Dijkstra_Algorithm(Graph, source_node) // iterating through the nodes in Graph and set their distances to INFINITY for each node N in Graph: distance[N] = INFINITY previous[N] = NULL If N != source_node, add N to Priority Queue G // setting the distance of the source node of the Graph to 0 distance[source_node] = 0 // iterating until the Priority Queue G is not empty while G is NOT empty: // selecting a node Q having the least distance and marking it as visited Q = node in G with the least distance[] mark Q visited // iterating through the unvisited neighboring nodes of the node Q and performing relaxation accordingly for each unvisited neighbor node N of Q: temporary_distance = distance[Q] + distance_between(Q, N) // if the temporary distance is less than the given distance of the path to the Node, updating the resultant distance with the minimum value if temporary_distance <distance[n] distance[n] :="temporary_distance" previous[n] returning the final list of distance return distance[], previous[] < pre> <p> <strong>Explanation:</strong> </p> <p>In the above pseudocode, we have defined a function that accepts multiple parameters - the Graph consisting of the nodes and the source node. Inside this function, we have iterated through each node in the Graph, set their initial distance to <strong>INFINITY</strong> , and set the previous node value to <strong>NULL</strong> . We have also checked whether any selected node is not a source node and added the same into the Priority Queue. Moreover, we have set the distance of the source node to <strong>0</strong> . We then iterated through the nodes in the priority queue, selected the node with the least distance, and marked it as visited. We then iterated through the unvisited neighboring nodes of the selected node and performed relaxation accordingly. At last, we have compared both the distances (original and temporary distance) between the source node and the destination node, updated the resultant distance with the minimum value and previous node information, and returned the final list of distances with their previous node information.</p> <h2>Implementation of Dijkstra&apos;s Algorithm in Different Programming Languages</h2> <p>Now that we have successfully understood the pseudocode of Dijkstra&apos;s Algorithm, it is time to see its implementation in different programming languages like C, C++, Java, and Python.</p> <h3>Code for Dijkstra&apos;s Algorithm in C</h3> <p>The following is the implementation of Dijkstra&apos;s Algorithm in the C Programming Language:</p> <p> <strong>File: DijkstraAlgorithm.c</strong> </p> <pre> // Implementation of Dijkstra&apos;s Algorithm in C // importing the standard I/O header file #include // defining some constants #define INF 9999 #define MAX 10 // prototyping of the function void DijkstraAlgorithm(int Graph[MAX][MAX], int size, int start); // defining the function for Dijkstra&apos;s Algorithm void DijkstraAlgorithm(int Graph[MAX][MAX], int size, int start) { int cost[MAX][MAX], distance[MAX], previous[MAX]; int visited_nodes[MAX], counter, minimum_distance, next_node, i, j; // creating cost matrix for (i = 0; i <size; i++) for (j="0;" j < size; j++) if (graph[i][j]="=" 0) cost[i][j]="INF;" else (i="0;" i { distance[i]="cost[start][i];" previous[i]="start;" visited_nodes[i]="0;" } distance[start]="0;" visited_nodes[start]="1;" counter="1;" while (counter size - 1) minimum_distance="INF;" (distance[i] && !visited_nodes[i]) next_node="i;" visited_nodes[next_node]="1;" (!visited_nodes[i]) (minimum_distance + cost[next_node][i] distance[i]) cost[next_node][i]; counter++; printing the distance !="start)" printf('
distance from source node to %d: %d', i, distance[i]); main function int main() defining variables graph[max][max], j, size, source; declaring of matrix nodes graph graph[0][0]="0;" graph[0][1]="4;" graph[0][2]="0;" graph[0][3]="0;" graph[0][4]="0;" graph[0][5]="8;" graph[0][6]="0;" graph[1][0]="4;" graph[1][1]="0;" graph[1][2]="8;" graph[1][3]="0;" graph[1][4]="0;" graph[1][5]="11;" graph[1][6]="0;" graph[2][0]="0;" graph[2][1]="8;" graph[2][2]="0;" graph[2][3]="7;" graph[2][4]="0;" graph[2][5]="4;" graph[2][6]="0;" graph[3][0]="0;" graph[3][1]="0;" graph[3][2]="7;" graph[3][3]="0;" graph[3][4]="9;" graph[3][5]="14;" graph[3][6]="0;" graph[4][0]="0;" graph[4][1]="0;" graph[4][2]="0;" graph[4][3]="9;" graph[4][4]="0;" graph[4][5]="10;" graph[4][6]="2;" graph[5][0]="0;" graph[5][1]="0;" graph[5][2]="4;" graph[5][3]="14;" graph[5][4]="10;" graph[5][5]="0;" graph[5][6]="2;" graph[6][0]="0;" graph[6][1]="0;" graph[6][2]="0;" graph[6][3]="0;" graph[6][4]="2;" graph[6][5]="0;" graph[6][6]="1;" calling dijkstraalgorithm() by passing graph, number and dijkstraalgorithm(graph, source); return 0; pre> <p> <strong>Output</strong> </p> <pre> Distance from the Source Node to 1: 4 Distance from the Source Node to 2: 12 Distance from the Source Node to 3: 19 Distance from the Source Node to 4: 12 Distance from the Source Node to 5: 8 Distance from the Source Node to 6: 10 </pre> <p> <strong>Explanation:</strong> </p> <p>In the above snippet of code, we have included the <strong>stdio.h</strong> header file defined two constant values: <strong>INF = 9999</strong> and <strong>MAX = 10</strong> . We have declared the prototyping of the function and then defined the function for Dijkstra&apos;s Algorithm as <strong>DijkstraAlgorithm</strong> that accepts three arguments - the Graph consisting of the nodes, the number of nodes in the Graph, and the source node. Inside this function, we have defined some data structures such as a 2D matrix that will work as the Priority Queue for the algorithm, an array to main the distance between the nodes, an array to maintain the record of previous nodes, an array to store the visited nodes information, and some integer variables to store minimum distance value, counter, next node value and more. We then used a <strong>nested for-loop</strong> to iterate through the nodes of the Graph and add them to the priority queue accordingly. We have again used the <strong>for-loop</strong> to iterate through the elements in the priority queue starting from the source node and update their distances. Outside the loop, we have set the distance of the source node as <strong>0</strong> and marked it as visited in the <strong>visited_nodes[]</strong> array. We then set the counter value as one and used the <strong>while</strong> loop iterating through the number of nodes. Inside this loop, we have set the value of <strong>minimum_distance</strong> as <strong>INF</strong> and used the <strong>for-loop</strong> to update the value of the <strong>minimum_distance</strong> variable with the minimum value from a <strong>distance[]</strong> array. We then iterated through the unvisited neighboring nodes of the selected node using the <strong>for-loop</strong> and performed relaxation. We then printed the resulting data of the distances calculated using Dijkstra&apos;s Algorithm.</p> <p>In the <strong>main</strong> function, we have defined and declared the variables representing the Graph, the number of nodes, and the source node. At last, we have called the <strong>DijkstraAlgorithm()</strong> function by passing the required parameters.</p> <p>As a result, the required shortest possible paths for every node from the source node are printed for the users.</p> <h3>Code for Dijkstra&apos;s Algorithm in C++</h3> <p>The following is the implementation of Dijkstra&apos;s Algorithm in the C++ Programming Language:</p> <p> <strong>File: DijkstraAlgorithm.cpp</strong> </p> <pre> // Implementation of Dijkstra&apos;s Algorithm in C++ // importing the required header files #include #include // defining constant #define MAX_INT 10000000 // using the standard namespace using namespace std; // prototyping of the DijkstraAlgorithm() function void DijkstraAlgorithm(); // main function int main() { DijkstraAlgorithm(); return 0; } // declaring the classes class Vertex; class Edge; // prototyping the functions void Dijkstra(); vector* Adjacent_Remaining_Nodes(Vertex* vertex); Vertex* Extract_Smallest(vector&amp; vertices); int Distance(Vertex* vertexOne, Vertex* vertexTwo); bool Contains(vector&amp; vertices, Vertex* vertex); void Print_Shortest_Route_To(Vertex* des); // instantiating the classes vector vertices; vector edges; // defining the class for the vertices of the graph class Vertex { public: Vertex(char id) : id(id), prev(NULL), distance_from_start(MAX_INT) { vertices.push_back(this); } public: char id; Vertex* prev; int distance_from_start; }; // defining the class for the edges of the graph class Edge { public: Edge(Vertex* vertexOne, Vertex* vertexTwo, int distance) : vertexOne(vertexOne), vertexTwo(vertexTwo), distance(distance) { edges.push_back(this); } bool Connects(Vertex* vertexOne, Vertex* vertexTwo) public: Vertex* vertexOne; Vertex* vertexTwo; int distance; }; // defining the function to collect the details of the graph void DijkstraAlgorithm() { // declaring some vertices Vertex* vertex_a = new Vertex(&apos;A&apos;); Vertex* vertex_b = new Vertex(&apos;B&apos;); Vertex* vertex_c = new Vertex(&apos;C&apos;); Vertex* vertex_d = new Vertex(&apos;D&apos;); Vertex* vertex_e = new Vertex(&apos;E&apos;); Vertex* vertex_f = new Vertex(&apos;F&apos;); Vertex* vertex_g = new Vertex(&apos;G&apos;); // declaring some edges Edge* edge_1 = new Edge(vertex_a, vertex_c, 1); Edge* edge_2 = new Edge(vertex_a, vertex_d, 2); Edge* edge_3 = new Edge(vertex_b, vertex_c, 2); Edge* edge_4 = new Edge(vertex_c, vertex_d, 1); Edge* edge_5 = new Edge(vertex_b, vertex_f, 3); Edge* edge_6 = new Edge(vertex_c, vertex_e, 3); Edge* edge_7 = new Edge(vertex_e, vertex_f, 2); Edge* edge_8 = new Edge(vertex_d, vertex_g, 1); Edge* edge_9 = new Edge(vertex_g, vertex_f, 1); vertex_a -&gt; distance_from_start = 0; // setting a start vertex // calling the Dijkstra() function to find the shortest route possible Dijkstra(); // calling the Print_Shortest_Route_To() function to print the shortest route from the source vertex to the destination vertex Print_Shortest_Route_To(vertex_f); } // defining the function for Dijkstra&apos;s Algorithm void Dijkstra() { while (vertices.size() &gt; 0) { Vertex* smallest = Extract_Smallest(vertices); vector* adjacent_nodes = Adjacent_Remaining_Nodes(smallest); const int size = adjacent_nodes -&gt; size(); for (int i = 0; i at(i); int distance = Distance(smallest, adjacent) + smallest -&gt; distance_from_start; if (distance distance_from_start) { adjacent -&gt; distance_from_start = distance; adjacent -&gt; prev = smallest; } } delete adjacent_nodes; } } // defining the function to find the vertex with the shortest distance, removing it, and returning it Vertex* Extract_Smallest(vector&amp; vertices) { int size = vertices.size(); if (size == 0) return NULL; int smallest_position = 0; Vertex* smallest = vertices.at(0); for (int i = 1; i distance_from_start distance_from_start) { smallest = current; smallest_position = i; } } vertices.erase(vertices.begin() + smallest_position); return smallest; } // defining the function to return all vertices adjacent to &apos;vertex&apos; which are still in the &apos;vertices&apos; collection. vector* Adjacent_Remaining_Nodes(Vertex* vertex) { vector* adjacent_nodes = new vector(); const int size = edges.size(); for (int i = 0; i vertexOne == vertex) { adjacent = edge -&gt; vertexTwo; } else if (edge -&gt; vertexTwo == vertex) { adjacent = edge -&gt; vertexOne; } if (adjacent &amp;&amp; Contains(vertices, adjacent)) { adjacent_nodes -&gt; push_back(adjacent); } } return adjacent_nodes; } // defining the function to return distance between two connected vertices int Distance(Vertex* vertexOne, Vertex* vertexTwo) { const int size = edges.size(); for (int i = 0; i Connects(vertexOne, vertexTwo)) { return edge -&gt; distance; } } return -1; // should never happen } // defining the function to check if the &apos;vertices&apos; vector contains &apos;vertex&apos; bool Contains(vector&amp; vertices, Vertex* vertex) { const int size = vertices.size(); for (int i = 0; i <size; ++i) { if (vertex="=" vertices.at(i)) return true; } false; defining the function to print shortest route destination void print_shortest_route_to(vertex* des) vertex* prev="des;" cout << 'distance from start: ' < distance_from_start endl; while (prev) id prev; pre> <p> <strong>Output</strong> </p> <pre> Distance from start: 4 F G D A </pre> <p> <strong>Explanation:</strong> </p> <p>In the above code snippet, we included the <strong>&apos;iostream&apos;</strong> and <strong>&apos;vector&apos;</strong> header files and defined a constant value as <strong>MAX_INT = 10000000</strong> . We then used the standard namespace and prototyped the <strong>DijkstraAlgorithm()</strong> function. We then defined the main function of the program within, which we have called the <strong>DijkstraAlgorithm()</strong> function. After that, we declared some classes to create vertices and edges. We have also prototyped more functions to find the shortest possible path from the source vertex to the destination vertex and instantiated the Vertex and Edge classes. We then defined both classes to create the vertices and edges of the graph. We have then defined the <strong>DijkstraAlgorithm()</strong> function to create a graph and perform different operations. Inside this function, we have declared some vertices and edges. We then set the source vertex of the graph and called the <strong>Dijkstra()</strong> function to find the shortest possible distance and <strong>Print_Shortest_Route_To()</strong> function to print the shortest distance from the source vertex to vertex <strong>&apos;F&apos;</strong> . We have then defined the <strong>Dijkstra()</strong> function to calculate the shortest possible distances of the all the vertices from the source vertex. We have also defined some more functions to find the vertex with the shortest distance to return all the vertices adjacent to the remaining vertex, to return the distance between two connected vertices, to check if the selected vertex exists in the graph, and to print the shortest possible path from the source vertex to the destination vertex.</p> <p>As a result, the required shortest path for the vertex <strong>&apos;F&apos;</strong> from the source node is printed for the users.</p> <h3>Code for Dijkstra&apos;s Algorithm in Java</h3> <p>The following is the implementation of Dijkstra&apos;s Algorithm in the Java Programming Language:</p> <p> <strong>File: DijkstraAlgorithm.java</strong> </p> <pre> // Implementation of Dijkstra&apos;s Algorithm in Java // defining the public class for Dijkstra&apos;s Algorithm public class DijkstraAlgorithm { // defining the method to implement Dijkstra&apos;s Algorithm public void dijkstraAlgorithm(int[][] graph, int source) { // number of nodes int nodes = graph.length; boolean[] visited_vertex = new boolean[nodes]; int[] dist = new int[nodes]; for (int i = 0; i <nodes; 0 1 i++) { visited_vertex[i]="false;" dist[i]="Integer.MAX_VALUE;" } distance of self loop is zero dist[source]="0;" for (int i="0;" < nodes; updating the between neighboring vertex and source int u="find_min_distance(dist," visited_vertex); visited_vertex[u]="true;" distances all vertices v="0;" v++) if (!visited_vertex[v] && graph[u][v] !="0" (dist[u] + dist[v])) dist[v]="dist[u]" graph[u][v]; dist.length; system.out.println(string.format('distance from %s to %s', source, i, dist[i])); defining method find minimum private static find_min_distance(int[] dist, boolean[] visited_vertex) minimum_distance="Integer.MAX_VALUE;" minimum_distance_vertex="-1;" (!visited_vertex[i] minimum_distance) return minimum_distance_vertex; main function public void main(string[] args) declaring nodes graphs graph[][]="new" int[][] 0, 1, 2, }, 3, }; instantiating dijkstraalgorithm() class dijkstraalgorithm test="new" dijkstraalgorithm(); calling shortest node destination test.dijkstraalgorithm(graph, 0); pre> <p> <strong>Output</strong> </p> <pre> Distance from Vertex 0 to Vertex 0 is 0 Distance from Vertex 0 to Vertex 1 is 1 Distance from Vertex 0 to Vertex 2 is 1 Distance from Vertex 0 to Vertex 3 is 2 Distance from Vertex 0 to Vertex 4 is 4 Distance from Vertex 0 to Vertex 5 is 4 Distance from Vertex 0 to Vertex 6 is 3 </pre> <p> <strong>Explanation:</strong> </p> <p>In the above snippet of code, we have defined a public class as <strong>DijkstraAlgorithm()</strong> . Inside this class, we have defined a public method as <strong>dijkstraAlgorithm()</strong> to find the shortest distance from the source vertex to the destination vertex. Inside this method, we have defined a variable to store the number of nodes. We have then defined a Boolean array to store the information regarding the visited vertices and an integer array to store their respective distances. Initially, we declared the values in both the arrays as <strong>False</strong> and <strong>MAX_VALUE</strong> , respectively. We have also set the distance of the source vertex as zero and used the <strong>for-loop</strong> to update the distance between the source vertex and destination vertices with the minimum distance. We have then updated the distances of the neighboring vertices of the selected vertex by performing relaxation and printed the shortest distances for every vertex. We have then defined a method to find the minimum distance from the source vertex to the destination vertex. We then defined the main function where we declared the vertices of the graph and instantiated the <strong>DijkstraAlgorithm()</strong> class. Finally, we have called the <strong>dijkstraAlgorithm()</strong> method to find the shortest distance between the source vertex and the destination vertices.</p> <p>As a result, the required shortest possible paths for every node from the source node are printed for the users.</p> <h3>Code for Dijkstra&apos;s Algorithm in Python</h3> <p>The following is the implementation of Dijkstra&apos;s Algorithm in the Python Programming Language:</p> <p> <strong>File: DikstraAlgorithm.py</strong> </p> <pre> # Implementation of Dijkstra&apos;s Algorithm in Python # importing the sys module import sys # declaring the list of nodes for the graph nodes = [ [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0], [1, 1, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 0] ] # declaring the list of edges for the graph edges = [ [0, 0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 3, 0], [1, 2, 0, 1, 3, 0, 0], [2, 0, 1, 0, 0, 0, 1], [0, 0, 3, 0, 0, 2, 0], [0, 3, 0, 0, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0] ] # defining the function to find which node is to be visited next def toBeVisited(): global visitedAndDistance v = -10 for index in range(numberOfNodes): if visitedAndDistance[index][0] == 0 and (v <0 1 or visitedanddistance[index][1] <="visitedAndDistance[v][1]):" v="index" return # finding the number of nodes in graph numberofnodes="len(nodes[0])" visitedanddistance="[[0," 0]] for i range(numberofnodes - 1): visitedanddistance.append([0, sys.maxsize]) node range(numberofnodes): next to be visited tovisit="toBeVisited()" neighborindex updating new distances if nodes[tovisit][neighborindex]="=" and visitedanddistance[neighborindex][0]="=" 0: newdistance="visitedAndDistance[toVisit][1]" + edges[tovisit][neighborindex] visitedanddistance[neighborindex][1]> newDistance: visitedAndDistance[neighborIndex][1] = newDistance visitedAndDistance[toVisit][0] = 1 i = 0 # printing the distance for distance in visitedAndDistance: print(&apos;Distance of&apos;, chr(ord(&apos;A&apos;) + i), &apos;from source node:&apos;, distance[1]) i = i + 1 </0></pre> <p> <strong>Output</strong> </p> <pre> Distance of A from source node: 0 Distance of B from source node: 3 Distance of C from source node: 1 Distance of D from source node: 2 Distance of E from source node: 2 Distance of F from source node: 4 Distance of G from source node: 3 </pre> <p> <strong>Explanation:</strong> </p> <p>In the above snippet of code, we have imported the <strong>sys</strong> module and declared the lists consisting of the values for the nodes and edges. We have then defined a function as <strong>toBeVisited()</strong> to find which node will be visited next. We then found the total number of nodes in the graph and set the initial distances for every node. We have then calculated the minimum distance from the source node to the destination node, performed relaxation on neighboring nodes, and updated the distances in the list. We then printed those distances from the list for the users.</p> <p>As a result, the required shortest possible paths for every node from the source node are printed for the users.</p> <h2>Time and Space Complexity of Dijkstra&apos;s Algorithm</h2> <ul> <li>The Time Complexity of Dijkstra&apos;s Algorithm is <strong>O(E log V)</strong> , where E is the number of edges and V is the number of vertices.</li> <li>The Space Complexity of Dijkstra&apos;s Algorithm is O(V), where V is the number of vertices.</li> </ul> <h2>Advantages and Disadvantages of Dijkstra&apos;s Algorithm</h2> <p> <strong>Let us discuss some advantages of Dijkstra&apos;s Algorithm:</strong> </p> <ol class="points"> <li>One primary advantage of using Dijkstra&apos;s Algorithm is that it has an almost linear time and space complexity.</li> <li>We can use this algorithm to calculate the shortest path from a single vertex to all other vertices and a single source vertex to a single destination vertex by stopping the algorithm once we get the shortest distance for the destination vertex.</li> <li>This algorithm only works for directed weighted graphs, and all the edges of this graph should be non-negative.</li> </ol> <p> <strong>Despite having multiple advantages, Dijkstra&apos;s algorithm has some disadvantages also, such as:</strong> </p> <ol class="points"> <li>Dijkstra&apos;s Algorithm performs a concealed exploration that utilizes a lot of time during the process.</li> <li>This algorithm is impotent to handle negative edges.</li> <li>Since this algorithm heads to the acyclic graph, it cannot calculate the exact shortest path.</li> <li>It also requires maintenance to keep a record of vertices that have been visited.</li> </ol> <h2>Some Applications of Dijkstra&apos;s Algorithm</h2> <p> <strong>Dijkstra&apos;s Algorithm has various real-world applications, some of which are stated below:</strong> </p> <ol class="points"> <tr><td>Digital Mapping Services in Google Maps:</td> There are various times when we have tried to find the distance in Google Maps either from our location to the nearest preferred location or from one city to another, which comprises multiple routes/paths connecting them; however, the application must display the minimum distance. This is only possible because Dijkstra&apos;s algorithm helps the application find the shortest between two given locations along the path. Let us consider the USA as a graph wherein the cities/places are represented as vertices, and the routes between two cities/places are represented as edges. Then with the help of Dijkstra&apos;s Algorithm, we can calculate the shortest routes between any two cities/places. </tr><tr><td>Social Networking Applications:</td> In many applications like Facebook, Twitter, Instagram, and more, many of us might have observed that these apps suggest the list of friends that a specific user may know. How do many social media companies implement this type of feature in an efficient and effective way, specifically when the system has over a billion users? The answer to this question is Dijkstra&apos;s Algorithm. The standard Dijkstra&apos;s Algorithm is generally used to estimate the shortest distance between the users measured through the connections or mutuality among them. When social networking is very small, it uses the standard Dijkstra&apos;s Algorithm in addition to some other features in order to determine the shortest paths. However, when the graph is much bigger, the standard algorithm takes several seconds to count, and thus, some advanced algorithms are used as the alternative. </tr><tr><td>Telephone Network:</td> As some of us might know, in a telephone network, each transmission line has a bandwidth, &apos;b&apos;. The bandwidth is the highest frequency that the transmission line can support. In general, if the frequency of the signal is higher in a specific line, the signal is reduced by that line. Bandwidth represents the amount of information that can be transmitted by the line. Let us consider a city a graph wherein the switching stations are represented using the vertices, the transmission lines are represented as the edges, and the bandwidth, &apos;b&apos;, is represented using the weight of the edges. Thus, as we can observe, the telephone network can also fall into the category of the shortest distance problem and can be solved using Dijkstra&apos;s Algorithm. </tr><tr><td>Flight Program:</td> Suppose that a person requires software to prepare an agenda of flights for customers. The agent has access to a database with all flights and airports. In addition to the flight number, origin airport, and destination, the flights also have departure and arrival times. So, in order to determine the earliest arrival time for the selected destination from the original airport and given start time, the agents make use of Dijkstra&apos;s Algorithm. </tr><tr><td>IP routing to find Open Shortest Path First:</td> Open Shortest Path First (abbreviated as OSPF) is a link-state routing protocol used to find the best path between the source and destination router with the help of its own Shortest Path First. Dijkstra&apos;s Algorithm is extensively utilized in the routing protocols required by the routers in order to update their forwarding table. The algorithm gives the shortest cost path from the source router to the other routers present in the network. </tr><tr><td>Robotic Path:</td> These days, drones and robots have come into existence, some operated manually and some automatically. The drones and robots which are operated automatically and used to deliver the packages to a given location or used for any certain task are configured with Dijkstra&apos;s Algorithm module so that whenever the source and destination are known, the drone and robot will move in the ordered direction by following the shortest path keeping the time taken to a minimum in order to deliver the packages. </tr><tr><td>Designate the File Server:</td> Dijkstra&apos;s Algorithm is also used to designate a file server in a Local Area Network (LAN). Suppose that an infinite period of time is needed for the transmission of the files from one computer to another. So, to minimize the number of &apos;hops&apos; from the file server to every other computer on the network, we will use Dijkstra&apos;s Algorithm. This algorithm will return the shortest path between the networks resulting in the minimum number of hops. </tr></ol> <h2>The Conclusion</h2> <ul> <li>In the above tutorial, firstly, we have understood the basic concepts of Graph along with its types and applications.</li> <li>We then learned about Dijkstra&apos;s Algorithm and its history.</li> <li>We have also understood the fundamental working of Dijkstra&apos;s Algorithm with the help of an example.</li> <li>After that, we studied how to write code for Dijkstra&apos;s Algorithm with the help of Pseudocode.</li> <li>We observed its implementation in programming languages like C, C++, Java, and Python with proper outputs and explanations.</li> <li>We have also understood the Time and Space Complexity of Dijkstra&apos;s Algorithm.</li> <li>Finally, we have discussed the advantages and disadvantages of Dijkstra&apos;s algorithm and some of its real-life applications.</li> </ul> <hr></nodes;></pre></size;></pre></size;></pre></distance[n]>

Explicação:

No trecho de código acima, incluímos o stdio.h arquivo de cabeçalho definiu dois valores constantes: INF = 9999 e MÁX = 10 . Declaramos a prototipagem da função e então definimos a função para o Algoritmo de Dijkstra como Algoritmo Dijkstra que aceita três argumentos - o gráfico que consiste nos nós, o número de nós no gráfico e o nó de origem. Dentro desta função, definimos algumas estruturas de dados como uma matriz 2D que funcionará como Fila de Prioridade para o algoritmo, um array para manter a distância entre os nós, um array para manter o registro dos nós anteriores, um array para armazenar as informações dos nós visitados e algumas variáveis ​​​​inteiras para armazenar o valor da distância mínima, contador, valor do próximo nó e muito mais. Usamos então um loop for aninhado para iterar pelos nós do gráfico e adicioná-los à fila de prioridade de acordo. Usamos novamente o loop for para iterar pelos elementos na fila de prioridade começando no nó de origem e atualizar suas distâncias. Fora do loop, definimos a distância do nó de origem como 0 e marcou-o como visitado no nós_visitados[] variedade. Em seguida, definimos o valor do contador como um e usamos o enquanto loop iterando através do número de nós. Dentro deste loop, definimos o valor de distância_mínima como INF e usou o loop for para atualizar o valor do distância_mínima variável com o valor mínimo de um distância[] variedade. Em seguida, iteramos pelos nós vizinhos não visitados do nó selecionado usando o loop for e realizou relaxamento. Em seguida, imprimimos os dados resultantes das distâncias calculadas usando o Algoritmo de Dijkstra.

No principal função, definimos e declaramos as variáveis ​​que representam o gráfico, o número de nós e o nó de origem. Por fim, chamamos o Algoritmo Dijkstra() função passando os parâmetros necessários.

Como resultado, os caminhos mais curtos possíveis necessários para cada nó do nó de origem são impressos para os usuários.

Código para o algoritmo de Dijkstra em C++

A seguir está a implementação do Algoritmo de Dijkstra na Linguagem de Programação C++:

Arquivo: DijkstraAlgorithm.cpp

 // Implementation of Dijkstra&apos;s Algorithm in C++ // importing the required header files #include #include // defining constant #define MAX_INT 10000000 // using the standard namespace using namespace std; // prototyping of the DijkstraAlgorithm() function void DijkstraAlgorithm(); // main function int main() { DijkstraAlgorithm(); return 0; } // declaring the classes class Vertex; class Edge; // prototyping the functions void Dijkstra(); vector* Adjacent_Remaining_Nodes(Vertex* vertex); Vertex* Extract_Smallest(vector&amp; vertices); int Distance(Vertex* vertexOne, Vertex* vertexTwo); bool Contains(vector&amp; vertices, Vertex* vertex); void Print_Shortest_Route_To(Vertex* des); // instantiating the classes vector vertices; vector edges; // defining the class for the vertices of the graph class Vertex { public: Vertex(char id) : id(id), prev(NULL), distance_from_start(MAX_INT) { vertices.push_back(this); } public: char id; Vertex* prev; int distance_from_start; }; // defining the class for the edges of the graph class Edge { public: Edge(Vertex* vertexOne, Vertex* vertexTwo, int distance) : vertexOne(vertexOne), vertexTwo(vertexTwo), distance(distance) { edges.push_back(this); } bool Connects(Vertex* vertexOne, Vertex* vertexTwo) public: Vertex* vertexOne; Vertex* vertexTwo; int distance; }; // defining the function to collect the details of the graph void DijkstraAlgorithm() { // declaring some vertices Vertex* vertex_a = new Vertex(&apos;A&apos;); Vertex* vertex_b = new Vertex(&apos;B&apos;); Vertex* vertex_c = new Vertex(&apos;C&apos;); Vertex* vertex_d = new Vertex(&apos;D&apos;); Vertex* vertex_e = new Vertex(&apos;E&apos;); Vertex* vertex_f = new Vertex(&apos;F&apos;); Vertex* vertex_g = new Vertex(&apos;G&apos;); // declaring some edges Edge* edge_1 = new Edge(vertex_a, vertex_c, 1); Edge* edge_2 = new Edge(vertex_a, vertex_d, 2); Edge* edge_3 = new Edge(vertex_b, vertex_c, 2); Edge* edge_4 = new Edge(vertex_c, vertex_d, 1); Edge* edge_5 = new Edge(vertex_b, vertex_f, 3); Edge* edge_6 = new Edge(vertex_c, vertex_e, 3); Edge* edge_7 = new Edge(vertex_e, vertex_f, 2); Edge* edge_8 = new Edge(vertex_d, vertex_g, 1); Edge* edge_9 = new Edge(vertex_g, vertex_f, 1); vertex_a -&gt; distance_from_start = 0; // setting a start vertex // calling the Dijkstra() function to find the shortest route possible Dijkstra(); // calling the Print_Shortest_Route_To() function to print the shortest route from the source vertex to the destination vertex Print_Shortest_Route_To(vertex_f); } // defining the function for Dijkstra&apos;s Algorithm void Dijkstra() { while (vertices.size() &gt; 0) { Vertex* smallest = Extract_Smallest(vertices); vector* adjacent_nodes = Adjacent_Remaining_Nodes(smallest); const int size = adjacent_nodes -&gt; size(); for (int i = 0; i at(i); int distance = Distance(smallest, adjacent) + smallest -&gt; distance_from_start; if (distance distance_from_start) { adjacent -&gt; distance_from_start = distance; adjacent -&gt; prev = smallest; } } delete adjacent_nodes; } } // defining the function to find the vertex with the shortest distance, removing it, and returning it Vertex* Extract_Smallest(vector&amp; vertices) { int size = vertices.size(); if (size == 0) return NULL; int smallest_position = 0; Vertex* smallest = vertices.at(0); for (int i = 1; i distance_from_start distance_from_start) { smallest = current; smallest_position = i; } } vertices.erase(vertices.begin() + smallest_position); return smallest; } // defining the function to return all vertices adjacent to &apos;vertex&apos; which are still in the &apos;vertices&apos; collection. vector* Adjacent_Remaining_Nodes(Vertex* vertex) { vector* adjacent_nodes = new vector(); const int size = edges.size(); for (int i = 0; i vertexOne == vertex) { adjacent = edge -&gt; vertexTwo; } else if (edge -&gt; vertexTwo == vertex) { adjacent = edge -&gt; vertexOne; } if (adjacent &amp;&amp; Contains(vertices, adjacent)) { adjacent_nodes -&gt; push_back(adjacent); } } return adjacent_nodes; } // defining the function to return distance between two connected vertices int Distance(Vertex* vertexOne, Vertex* vertexTwo) { const int size = edges.size(); for (int i = 0; i Connects(vertexOne, vertexTwo)) { return edge -&gt; distance; } } return -1; // should never happen } // defining the function to check if the &apos;vertices&apos; vector contains &apos;vertex&apos; bool Contains(vector&amp; vertices, Vertex* vertex) { const int size = vertices.size(); for (int i = 0; i <size; ++i) { if (vertex="=" vertices.at(i)) return true; } false; defining the function to print shortest route destination void print_shortest_route_to(vertex* des) vertex* prev="des;" cout << \'distance from start: \' < distance_from_start endl; while (prev) id prev; pre> <p> <strong>Output</strong> </p> <pre> Distance from start: 4 F G D A </pre> <p> <strong>Explanation:</strong> </p> <p>In the above code snippet, we included the <strong>&apos;iostream&apos;</strong> and <strong>&apos;vector&apos;</strong> header files and defined a constant value as <strong>MAX_INT = 10000000</strong> . We then used the standard namespace and prototyped the <strong>DijkstraAlgorithm()</strong> function. We then defined the main function of the program within, which we have called the <strong>DijkstraAlgorithm()</strong> function. After that, we declared some classes to create vertices and edges. We have also prototyped more functions to find the shortest possible path from the source vertex to the destination vertex and instantiated the Vertex and Edge classes. We then defined both classes to create the vertices and edges of the graph. We have then defined the <strong>DijkstraAlgorithm()</strong> function to create a graph and perform different operations. Inside this function, we have declared some vertices and edges. We then set the source vertex of the graph and called the <strong>Dijkstra()</strong> function to find the shortest possible distance and <strong>Print_Shortest_Route_To()</strong> function to print the shortest distance from the source vertex to vertex <strong>&apos;F&apos;</strong> . We have then defined the <strong>Dijkstra()</strong> function to calculate the shortest possible distances of the all the vertices from the source vertex. We have also defined some more functions to find the vertex with the shortest distance to return all the vertices adjacent to the remaining vertex, to return the distance between two connected vertices, to check if the selected vertex exists in the graph, and to print the shortest possible path from the source vertex to the destination vertex.</p> <p>As a result, the required shortest path for the vertex <strong>&apos;F&apos;</strong> from the source node is printed for the users.</p> <h3>Code for Dijkstra&apos;s Algorithm in Java</h3> <p>The following is the implementation of Dijkstra&apos;s Algorithm in the Java Programming Language:</p> <p> <strong>File: DijkstraAlgorithm.java</strong> </p> <pre> // Implementation of Dijkstra&apos;s Algorithm in Java // defining the public class for Dijkstra&apos;s Algorithm public class DijkstraAlgorithm { // defining the method to implement Dijkstra&apos;s Algorithm public void dijkstraAlgorithm(int[][] graph, int source) { // number of nodes int nodes = graph.length; boolean[] visited_vertex = new boolean[nodes]; int[] dist = new int[nodes]; for (int i = 0; i <nodes; 0 1 i++) { visited_vertex[i]="false;" dist[i]="Integer.MAX_VALUE;" } distance of self loop is zero dist[source]="0;" for (int i="0;" < nodes; updating the between neighboring vertex and source int u="find_min_distance(dist," visited_vertex); visited_vertex[u]="true;" distances all vertices v="0;" v++) if (!visited_vertex[v] && graph[u][v] !="0" (dist[u] + dist[v])) dist[v]="dist[u]" graph[u][v]; dist.length; system.out.println(string.format(\'distance from %s to %s\', source, i, dist[i])); defining method find minimum private static find_min_distance(int[] dist, boolean[] visited_vertex) minimum_distance="Integer.MAX_VALUE;" minimum_distance_vertex="-1;" (!visited_vertex[i] minimum_distance) return minimum_distance_vertex; main function public void main(string[] args) declaring nodes graphs graph[][]="new" int[][] 0, 1, 2, }, 3, }; instantiating dijkstraalgorithm() class dijkstraalgorithm test="new" dijkstraalgorithm(); calling shortest node destination test.dijkstraalgorithm(graph, 0); pre> <p> <strong>Output</strong> </p> <pre> Distance from Vertex 0 to Vertex 0 is 0 Distance from Vertex 0 to Vertex 1 is 1 Distance from Vertex 0 to Vertex 2 is 1 Distance from Vertex 0 to Vertex 3 is 2 Distance from Vertex 0 to Vertex 4 is 4 Distance from Vertex 0 to Vertex 5 is 4 Distance from Vertex 0 to Vertex 6 is 3 </pre> <p> <strong>Explanation:</strong> </p> <p>In the above snippet of code, we have defined a public class as <strong>DijkstraAlgorithm()</strong> . Inside this class, we have defined a public method as <strong>dijkstraAlgorithm()</strong> to find the shortest distance from the source vertex to the destination vertex. Inside this method, we have defined a variable to store the number of nodes. We have then defined a Boolean array to store the information regarding the visited vertices and an integer array to store their respective distances. Initially, we declared the values in both the arrays as <strong>False</strong> and <strong>MAX_VALUE</strong> , respectively. We have also set the distance of the source vertex as zero and used the <strong>for-loop</strong> to update the distance between the source vertex and destination vertices with the minimum distance. We have then updated the distances of the neighboring vertices of the selected vertex by performing relaxation and printed the shortest distances for every vertex. We have then defined a method to find the minimum distance from the source vertex to the destination vertex. We then defined the main function where we declared the vertices of the graph and instantiated the <strong>DijkstraAlgorithm()</strong> class. Finally, we have called the <strong>dijkstraAlgorithm()</strong> method to find the shortest distance between the source vertex and the destination vertices.</p> <p>As a result, the required shortest possible paths for every node from the source node are printed for the users.</p> <h3>Code for Dijkstra&apos;s Algorithm in Python</h3> <p>The following is the implementation of Dijkstra&apos;s Algorithm in the Python Programming Language:</p> <p> <strong>File: DikstraAlgorithm.py</strong> </p> <pre> # Implementation of Dijkstra&apos;s Algorithm in Python # importing the sys module import sys # declaring the list of nodes for the graph nodes = [ [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0], [1, 1, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 0] ] # declaring the list of edges for the graph edges = [ [0, 0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 3, 0], [1, 2, 0, 1, 3, 0, 0], [2, 0, 1, 0, 0, 0, 1], [0, 0, 3, 0, 0, 2, 0], [0, 3, 0, 0, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0] ] # defining the function to find which node is to be visited next def toBeVisited(): global visitedAndDistance v = -10 for index in range(numberOfNodes): if visitedAndDistance[index][0] == 0 and (v <0 1 or visitedanddistance[index][1] <="visitedAndDistance[v][1]):" v="index" return # finding the number of nodes in graph numberofnodes="len(nodes[0])" visitedanddistance="[[0," 0]] for i range(numberofnodes - 1): visitedanddistance.append([0, sys.maxsize]) node range(numberofnodes): next to be visited tovisit="toBeVisited()" neighborindex updating new distances if nodes[tovisit][neighborindex]="=" and visitedanddistance[neighborindex][0]="=" 0: newdistance="visitedAndDistance[toVisit][1]" + edges[tovisit][neighborindex] visitedanddistance[neighborindex][1]> newDistance: visitedAndDistance[neighborIndex][1] = newDistance visitedAndDistance[toVisit][0] = 1 i = 0 # printing the distance for distance in visitedAndDistance: print(&apos;Distance of&apos;, chr(ord(&apos;A&apos;) + i), &apos;from source node:&apos;, distance[1]) i = i + 1 </0></pre> <p> <strong>Output</strong> </p> <pre> Distance of A from source node: 0 Distance of B from source node: 3 Distance of C from source node: 1 Distance of D from source node: 2 Distance of E from source node: 2 Distance of F from source node: 4 Distance of G from source node: 3 </pre> <p> <strong>Explanation:</strong> </p> <p>In the above snippet of code, we have imported the <strong>sys</strong> module and declared the lists consisting of the values for the nodes and edges. We have then defined a function as <strong>toBeVisited()</strong> to find which node will be visited next. We then found the total number of nodes in the graph and set the initial distances for every node. We have then calculated the minimum distance from the source node to the destination node, performed relaxation on neighboring nodes, and updated the distances in the list. We then printed those distances from the list for the users.</p> <p>As a result, the required shortest possible paths for every node from the source node are printed for the users.</p> <h2>Time and Space Complexity of Dijkstra&apos;s Algorithm</h2> <ul> <li>The Time Complexity of Dijkstra&apos;s Algorithm is <strong>O(E log V)</strong> , where E is the number of edges and V is the number of vertices.</li> <li>The Space Complexity of Dijkstra&apos;s Algorithm is O(V), where V is the number of vertices.</li> </ul> <h2>Advantages and Disadvantages of Dijkstra&apos;s Algorithm</h2> <p> <strong>Let us discuss some advantages of Dijkstra&apos;s Algorithm:</strong> </p> <ol class="points"> <li>One primary advantage of using Dijkstra&apos;s Algorithm is that it has an almost linear time and space complexity.</li> <li>We can use this algorithm to calculate the shortest path from a single vertex to all other vertices and a single source vertex to a single destination vertex by stopping the algorithm once we get the shortest distance for the destination vertex.</li> <li>This algorithm only works for directed weighted graphs, and all the edges of this graph should be non-negative.</li> </ol> <p> <strong>Despite having multiple advantages, Dijkstra&apos;s algorithm has some disadvantages also, such as:</strong> </p> <ol class="points"> <li>Dijkstra&apos;s Algorithm performs a concealed exploration that utilizes a lot of time during the process.</li> <li>This algorithm is impotent to handle negative edges.</li> <li>Since this algorithm heads to the acyclic graph, it cannot calculate the exact shortest path.</li> <li>It also requires maintenance to keep a record of vertices that have been visited.</li> </ol> <h2>Some Applications of Dijkstra&apos;s Algorithm</h2> <p> <strong>Dijkstra&apos;s Algorithm has various real-world applications, some of which are stated below:</strong> </p> <ol class="points"> <tr><td>Digital Mapping Services in Google Maps:</td> There are various times when we have tried to find the distance in Google Maps either from our location to the nearest preferred location or from one city to another, which comprises multiple routes/paths connecting them; however, the application must display the minimum distance. This is only possible because Dijkstra&apos;s algorithm helps the application find the shortest between two given locations along the path. Let us consider the USA as a graph wherein the cities/places are represented as vertices, and the routes between two cities/places are represented as edges. Then with the help of Dijkstra&apos;s Algorithm, we can calculate the shortest routes between any two cities/places. </tr><tr><td>Social Networking Applications:</td> In many applications like Facebook, Twitter, Instagram, and more, many of us might have observed that these apps suggest the list of friends that a specific user may know. How do many social media companies implement this type of feature in an efficient and effective way, specifically when the system has over a billion users? The answer to this question is Dijkstra&apos;s Algorithm. The standard Dijkstra&apos;s Algorithm is generally used to estimate the shortest distance between the users measured through the connections or mutuality among them. When social networking is very small, it uses the standard Dijkstra&apos;s Algorithm in addition to some other features in order to determine the shortest paths. However, when the graph is much bigger, the standard algorithm takes several seconds to count, and thus, some advanced algorithms are used as the alternative. </tr><tr><td>Telephone Network:</td> As some of us might know, in a telephone network, each transmission line has a bandwidth, &apos;b&apos;. The bandwidth is the highest frequency that the transmission line can support. In general, if the frequency of the signal is higher in a specific line, the signal is reduced by that line. Bandwidth represents the amount of information that can be transmitted by the line. Let us consider a city a graph wherein the switching stations are represented using the vertices, the transmission lines are represented as the edges, and the bandwidth, &apos;b&apos;, is represented using the weight of the edges. Thus, as we can observe, the telephone network can also fall into the category of the shortest distance problem and can be solved using Dijkstra&apos;s Algorithm. </tr><tr><td>Flight Program:</td> Suppose that a person requires software to prepare an agenda of flights for customers. The agent has access to a database with all flights and airports. In addition to the flight number, origin airport, and destination, the flights also have departure and arrival times. So, in order to determine the earliest arrival time for the selected destination from the original airport and given start time, the agents make use of Dijkstra&apos;s Algorithm. </tr><tr><td>IP routing to find Open Shortest Path First:</td> Open Shortest Path First (abbreviated as OSPF) is a link-state routing protocol used to find the best path between the source and destination router with the help of its own Shortest Path First. Dijkstra&apos;s Algorithm is extensively utilized in the routing protocols required by the routers in order to update their forwarding table. The algorithm gives the shortest cost path from the source router to the other routers present in the network. </tr><tr><td>Robotic Path:</td> These days, drones and robots have come into existence, some operated manually and some automatically. The drones and robots which are operated automatically and used to deliver the packages to a given location or used for any certain task are configured with Dijkstra&apos;s Algorithm module so that whenever the source and destination are known, the drone and robot will move in the ordered direction by following the shortest path keeping the time taken to a minimum in order to deliver the packages. </tr><tr><td>Designate the File Server:</td> Dijkstra&apos;s Algorithm is also used to designate a file server in a Local Area Network (LAN). Suppose that an infinite period of time is needed for the transmission of the files from one computer to another. So, to minimize the number of &apos;hops&apos; from the file server to every other computer on the network, we will use Dijkstra&apos;s Algorithm. This algorithm will return the shortest path between the networks resulting in the minimum number of hops. </tr></ol> <h2>The Conclusion</h2> <ul> <li>In the above tutorial, firstly, we have understood the basic concepts of Graph along with its types and applications.</li> <li>We then learned about Dijkstra&apos;s Algorithm and its history.</li> <li>We have also understood the fundamental working of Dijkstra&apos;s Algorithm with the help of an example.</li> <li>After that, we studied how to write code for Dijkstra&apos;s Algorithm with the help of Pseudocode.</li> <li>We observed its implementation in programming languages like C, C++, Java, and Python with proper outputs and explanations.</li> <li>We have also understood the Time and Space Complexity of Dijkstra&apos;s Algorithm.</li> <li>Finally, we have discussed the advantages and disadvantages of Dijkstra&apos;s algorithm and some of its real-life applications.</li> </ul> <hr></nodes;></pre></size;>

Explicação:

No trecho de código acima, incluímos o 'iostream' e 'vetor' arquivos de cabeçalho e definiu um valor constante como MAX_INT = 10000000 . Em seguida, usamos o namespace padrão e prototipamos o Algoritmo Dijkstra() função. Definimos então a função principal do programa, que chamamos de Algoritmo Dijkstra() função. Depois disso, declaramos algumas classes para criar vértices e arestas. Também prototipamos mais funções para encontrar o caminho mais curto possível do vértice de origem ao vértice de destino e instanciamos as classes Vertex e Edge. Em seguida, definimos ambas as classes para criar os vértices e arestas do gráfico. Definimos então o Algoritmo Dijkstra() função para criar um gráfico e realizar diferentes operações. Dentro desta função, declaramos alguns vértices e arestas. Em seguida, definimos o vértice de origem do gráfico e chamamos de Dijkstra() função para encontrar a distância mais curta possível e Print_Shortest_Route_To() função para imprimir a distância mais curta do vértice de origem ao vértice 'F' . Definimos então o Dijkstra() função para calcular as distâncias mais curtas possíveis de todos os vértices do vértice de origem. Também definimos mais algumas funções para encontrar o vértice com a distância mais curta para retornar todos os vértices adjacentes ao vértice restante, para retornar a distância entre dois vértices conectados, para verificar se o vértice selecionado existe no gráfico e para imprimir o caminho mais curto possível do vértice de origem ao vértice de destino.

Como resultado, o caminho mais curto necessário para o vértice 'F' do nó de origem é impresso para os usuários.

Código para o algoritmo de Dijkstra em Java

A seguir está a implementação do Algoritmo de Dijkstra na Linguagem de Programação Java:

Arquivo: DijkstraAlgorithm.java

 // Implementation of Dijkstra&apos;s Algorithm in Java // defining the public class for Dijkstra&apos;s Algorithm public class DijkstraAlgorithm { // defining the method to implement Dijkstra&apos;s Algorithm public void dijkstraAlgorithm(int[][] graph, int source) { // number of nodes int nodes = graph.length; boolean[] visited_vertex = new boolean[nodes]; int[] dist = new int[nodes]; for (int i = 0; i <nodes; 0 1 i++) { visited_vertex[i]="false;" dist[i]="Integer.MAX_VALUE;" } distance of self loop is zero dist[source]="0;" for (int i="0;" < nodes; updating the between neighboring vertex and source int u="find_min_distance(dist," visited_vertex); visited_vertex[u]="true;" distances all vertices v="0;" v++) if (!visited_vertex[v] && graph[u][v] !="0" (dist[u] + dist[v])) dist[v]="dist[u]" graph[u][v]; dist.length; system.out.println(string.format(\'distance from %s to %s\', source, i, dist[i])); defining method find minimum private static find_min_distance(int[] dist, boolean[] visited_vertex) minimum_distance="Integer.MAX_VALUE;" minimum_distance_vertex="-1;" (!visited_vertex[i] minimum_distance) return minimum_distance_vertex; main function public void main(string[] args) declaring nodes graphs graph[][]="new" int[][] 0, 1, 2, }, 3, }; instantiating dijkstraalgorithm() class dijkstraalgorithm test="new" dijkstraalgorithm(); calling shortest node destination test.dijkstraalgorithm(graph, 0); pre> <p> <strong>Output</strong> </p> <pre> Distance from Vertex 0 to Vertex 0 is 0 Distance from Vertex 0 to Vertex 1 is 1 Distance from Vertex 0 to Vertex 2 is 1 Distance from Vertex 0 to Vertex 3 is 2 Distance from Vertex 0 to Vertex 4 is 4 Distance from Vertex 0 to Vertex 5 is 4 Distance from Vertex 0 to Vertex 6 is 3 </pre> <p> <strong>Explanation:</strong> </p> <p>In the above snippet of code, we have defined a public class as <strong>DijkstraAlgorithm()</strong> . Inside this class, we have defined a public method as <strong>dijkstraAlgorithm()</strong> to find the shortest distance from the source vertex to the destination vertex. Inside this method, we have defined a variable to store the number of nodes. We have then defined a Boolean array to store the information regarding the visited vertices and an integer array to store their respective distances. Initially, we declared the values in both the arrays as <strong>False</strong> and <strong>MAX_VALUE</strong> , respectively. We have also set the distance of the source vertex as zero and used the <strong>for-loop</strong> to update the distance between the source vertex and destination vertices with the minimum distance. We have then updated the distances of the neighboring vertices of the selected vertex by performing relaxation and printed the shortest distances for every vertex. We have then defined a method to find the minimum distance from the source vertex to the destination vertex. We then defined the main function where we declared the vertices of the graph and instantiated the <strong>DijkstraAlgorithm()</strong> class. Finally, we have called the <strong>dijkstraAlgorithm()</strong> method to find the shortest distance between the source vertex and the destination vertices.</p> <p>As a result, the required shortest possible paths for every node from the source node are printed for the users.</p> <h3>Code for Dijkstra&apos;s Algorithm in Python</h3> <p>The following is the implementation of Dijkstra&apos;s Algorithm in the Python Programming Language:</p> <p> <strong>File: DikstraAlgorithm.py</strong> </p> <pre> # Implementation of Dijkstra&apos;s Algorithm in Python # importing the sys module import sys # declaring the list of nodes for the graph nodes = [ [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0], [1, 1, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 0] ] # declaring the list of edges for the graph edges = [ [0, 0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 3, 0], [1, 2, 0, 1, 3, 0, 0], [2, 0, 1, 0, 0, 0, 1], [0, 0, 3, 0, 0, 2, 0], [0, 3, 0, 0, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0] ] # defining the function to find which node is to be visited next def toBeVisited(): global visitedAndDistance v = -10 for index in range(numberOfNodes): if visitedAndDistance[index][0] == 0 and (v <0 1 or visitedanddistance[index][1] <="visitedAndDistance[v][1]):" v="index" return # finding the number of nodes in graph numberofnodes="len(nodes[0])" visitedanddistance="[[0," 0]] for i range(numberofnodes - 1): visitedanddistance.append([0, sys.maxsize]) node range(numberofnodes): next to be visited tovisit="toBeVisited()" neighborindex updating new distances if nodes[tovisit][neighborindex]="=" and visitedanddistance[neighborindex][0]="=" 0: newdistance="visitedAndDistance[toVisit][1]" + edges[tovisit][neighborindex] visitedanddistance[neighborindex][1]> newDistance: visitedAndDistance[neighborIndex][1] = newDistance visitedAndDistance[toVisit][0] = 1 i = 0 # printing the distance for distance in visitedAndDistance: print(&apos;Distance of&apos;, chr(ord(&apos;A&apos;) + i), &apos;from source node:&apos;, distance[1]) i = i + 1 </0></pre> <p> <strong>Output</strong> </p> <pre> Distance of A from source node: 0 Distance of B from source node: 3 Distance of C from source node: 1 Distance of D from source node: 2 Distance of E from source node: 2 Distance of F from source node: 4 Distance of G from source node: 3 </pre> <p> <strong>Explanation:</strong> </p> <p>In the above snippet of code, we have imported the <strong>sys</strong> module and declared the lists consisting of the values for the nodes and edges. We have then defined a function as <strong>toBeVisited()</strong> to find which node will be visited next. We then found the total number of nodes in the graph and set the initial distances for every node. We have then calculated the minimum distance from the source node to the destination node, performed relaxation on neighboring nodes, and updated the distances in the list. We then printed those distances from the list for the users.</p> <p>As a result, the required shortest possible paths for every node from the source node are printed for the users.</p> <h2>Time and Space Complexity of Dijkstra&apos;s Algorithm</h2> <ul> <li>The Time Complexity of Dijkstra&apos;s Algorithm is <strong>O(E log V)</strong> , where E is the number of edges and V is the number of vertices.</li> <li>The Space Complexity of Dijkstra&apos;s Algorithm is O(V), where V is the number of vertices.</li> </ul> <h2>Advantages and Disadvantages of Dijkstra&apos;s Algorithm</h2> <p> <strong>Let us discuss some advantages of Dijkstra&apos;s Algorithm:</strong> </p> <ol class="points"> <li>One primary advantage of using Dijkstra&apos;s Algorithm is that it has an almost linear time and space complexity.</li> <li>We can use this algorithm to calculate the shortest path from a single vertex to all other vertices and a single source vertex to a single destination vertex by stopping the algorithm once we get the shortest distance for the destination vertex.</li> <li>This algorithm only works for directed weighted graphs, and all the edges of this graph should be non-negative.</li> </ol> <p> <strong>Despite having multiple advantages, Dijkstra&apos;s algorithm has some disadvantages also, such as:</strong> </p> <ol class="points"> <li>Dijkstra&apos;s Algorithm performs a concealed exploration that utilizes a lot of time during the process.</li> <li>This algorithm is impotent to handle negative edges.</li> <li>Since this algorithm heads to the acyclic graph, it cannot calculate the exact shortest path.</li> <li>It also requires maintenance to keep a record of vertices that have been visited.</li> </ol> <h2>Some Applications of Dijkstra&apos;s Algorithm</h2> <p> <strong>Dijkstra&apos;s Algorithm has various real-world applications, some of which are stated below:</strong> </p> <ol class="points"> <tr><td>Digital Mapping Services in Google Maps:</td> There are various times when we have tried to find the distance in Google Maps either from our location to the nearest preferred location or from one city to another, which comprises multiple routes/paths connecting them; however, the application must display the minimum distance. This is only possible because Dijkstra&apos;s algorithm helps the application find the shortest between two given locations along the path. Let us consider the USA as a graph wherein the cities/places are represented as vertices, and the routes between two cities/places are represented as edges. Then with the help of Dijkstra&apos;s Algorithm, we can calculate the shortest routes between any two cities/places. </tr><tr><td>Social Networking Applications:</td> In many applications like Facebook, Twitter, Instagram, and more, many of us might have observed that these apps suggest the list of friends that a specific user may know. How do many social media companies implement this type of feature in an efficient and effective way, specifically when the system has over a billion users? The answer to this question is Dijkstra&apos;s Algorithm. The standard Dijkstra&apos;s Algorithm is generally used to estimate the shortest distance between the users measured through the connections or mutuality among them. When social networking is very small, it uses the standard Dijkstra&apos;s Algorithm in addition to some other features in order to determine the shortest paths. However, when the graph is much bigger, the standard algorithm takes several seconds to count, and thus, some advanced algorithms are used as the alternative. </tr><tr><td>Telephone Network:</td> As some of us might know, in a telephone network, each transmission line has a bandwidth, &apos;b&apos;. The bandwidth is the highest frequency that the transmission line can support. In general, if the frequency of the signal is higher in a specific line, the signal is reduced by that line. Bandwidth represents the amount of information that can be transmitted by the line. Let us consider a city a graph wherein the switching stations are represented using the vertices, the transmission lines are represented as the edges, and the bandwidth, &apos;b&apos;, is represented using the weight of the edges. Thus, as we can observe, the telephone network can also fall into the category of the shortest distance problem and can be solved using Dijkstra&apos;s Algorithm. </tr><tr><td>Flight Program:</td> Suppose that a person requires software to prepare an agenda of flights for customers. The agent has access to a database with all flights and airports. In addition to the flight number, origin airport, and destination, the flights also have departure and arrival times. So, in order to determine the earliest arrival time for the selected destination from the original airport and given start time, the agents make use of Dijkstra&apos;s Algorithm. </tr><tr><td>IP routing to find Open Shortest Path First:</td> Open Shortest Path First (abbreviated as OSPF) is a link-state routing protocol used to find the best path between the source and destination router with the help of its own Shortest Path First. Dijkstra&apos;s Algorithm is extensively utilized in the routing protocols required by the routers in order to update their forwarding table. The algorithm gives the shortest cost path from the source router to the other routers present in the network. </tr><tr><td>Robotic Path:</td> These days, drones and robots have come into existence, some operated manually and some automatically. The drones and robots which are operated automatically and used to deliver the packages to a given location or used for any certain task are configured with Dijkstra&apos;s Algorithm module so that whenever the source and destination are known, the drone and robot will move in the ordered direction by following the shortest path keeping the time taken to a minimum in order to deliver the packages. </tr><tr><td>Designate the File Server:</td> Dijkstra&apos;s Algorithm is also used to designate a file server in a Local Area Network (LAN). Suppose that an infinite period of time is needed for the transmission of the files from one computer to another. So, to minimize the number of &apos;hops&apos; from the file server to every other computer on the network, we will use Dijkstra&apos;s Algorithm. This algorithm will return the shortest path between the networks resulting in the minimum number of hops. </tr></ol> <h2>The Conclusion</h2> <ul> <li>In the above tutorial, firstly, we have understood the basic concepts of Graph along with its types and applications.</li> <li>We then learned about Dijkstra&apos;s Algorithm and its history.</li> <li>We have also understood the fundamental working of Dijkstra&apos;s Algorithm with the help of an example.</li> <li>After that, we studied how to write code for Dijkstra&apos;s Algorithm with the help of Pseudocode.</li> <li>We observed its implementation in programming languages like C, C++, Java, and Python with proper outputs and explanations.</li> <li>We have also understood the Time and Space Complexity of Dijkstra&apos;s Algorithm.</li> <li>Finally, we have discussed the advantages and disadvantages of Dijkstra&apos;s algorithm and some of its real-life applications.</li> </ul> <hr></nodes;>

Explicação:

No trecho de código acima, definimos uma classe pública como Algoritmo Dijkstra() . Dentro desta classe, definimos um método público como dijkstraAlgoritmo() para encontrar a distância mais curta do vértice de origem ao vértice de destino. Dentro deste método, definimos uma variável para armazenar o número de nós. Definimos então um array booleano para armazenar as informações referentes aos vértices visitados e um array inteiro para armazenar suas respectivas distâncias. Inicialmente, declaramos os valores em ambos os arrays como Falso e VALOR MÁXIMO , respectivamente. Também definimos a distância do vértice de origem como zero e usamos o loop for para atualizar a distância entre o vértice de origem e os vértices de destino com a distância mínima. Em seguida, atualizamos as distâncias dos vértices vizinhos do vértice selecionado realizando relaxamento e imprimimos as distâncias mais curtas para cada vértice. Definimos então um método para encontrar a distância mínima do vértice de origem ao vértice de destino. Definimos então a função principal onde declaramos os vértices do gráfico e instanciamos o Algoritmo Dijkstra() aula. Por fim, chamamos o dijkstraAlgoritmo() método para encontrar a distância mais curta entre o vértice de origem e os vértices de destino.

Como resultado, os caminhos mais curtos possíveis necessários para cada nó do nó de origem são impressos para os usuários.

Código para o algoritmo de Dijkstra em Python

A seguir está a implementação do algoritmo de Dijkstra na linguagem de programação Python:

Arquivo: DikstraAlgorithm.py

 # Implementation of Dijkstra&apos;s Algorithm in Python # importing the sys module import sys # declaring the list of nodes for the graph nodes = [ [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0], [1, 1, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 0] ] # declaring the list of edges for the graph edges = [ [0, 0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 3, 0], [1, 2, 0, 1, 3, 0, 0], [2, 0, 1, 0, 0, 0, 1], [0, 0, 3, 0, 0, 2, 0], [0, 3, 0, 0, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0] ] # defining the function to find which node is to be visited next def toBeVisited(): global visitedAndDistance v = -10 for index in range(numberOfNodes): if visitedAndDistance[index][0] == 0 and (v <0 1 or visitedanddistance[index][1] <="visitedAndDistance[v][1]):" v="index" return # finding the number of nodes in graph numberofnodes="len(nodes[0])" visitedanddistance="[[0," 0]] for i range(numberofnodes - 1): visitedanddistance.append([0, sys.maxsize]) node range(numberofnodes): next to be visited tovisit="toBeVisited()" neighborindex updating new distances if nodes[tovisit][neighborindex]="=" and visitedanddistance[neighborindex][0]="=" 0: newdistance="visitedAndDistance[toVisit][1]" + edges[tovisit][neighborindex] visitedanddistance[neighborindex][1]> newDistance: visitedAndDistance[neighborIndex][1] = newDistance visitedAndDistance[toVisit][0] = 1 i = 0 # printing the distance for distance in visitedAndDistance: print(&apos;Distance of&apos;, chr(ord(&apos;A&apos;) + i), &apos;from source node:&apos;, distance[1]) i = i + 1 </0>

Saída

 Distance of A from source node: 0 Distance of B from source node: 3 Distance of C from source node: 1 Distance of D from source node: 2 Distance of E from source node: 2 Distance of F from source node: 4 Distance of G from source node: 3 

Explicação:

No trecho de código acima, importamos o sistema módulo e declarou as listas que consistem nos valores dos nós e arestas. Definimos então uma função como servisitado() para descobrir qual nó será visitado em seguida. Em seguida, encontramos o número total de nós no gráfico e definimos as distâncias iniciais para cada nó. Calculamos então a distância mínima do nó de origem ao nó de destino, realizamos o relaxamento nos nós vizinhos e atualizamos as distâncias na lista. Em seguida, imprimimos essas distâncias da lista para os usuários.

Como resultado, os caminhos mais curtos possíveis necessários para cada nó do nó de origem são impressos para os usuários.

Complexidade de tempo e espaço do algoritmo de Dijkstra

  • A complexidade temporal do algoritmo de Dijkstra é O(Elog V) , onde E é o número de arestas e V é o número de vértices.
  • A Complexidade Espacial do Algoritmo de Dijkstra é O(V), onde V é o número de vértices.

Vantagens e desvantagens do algoritmo de Dijkstra

Vamos discutir algumas vantagens do Algoritmo de Dijkstra:

  1. Uma vantagem principal de usar o Algoritmo de Dijkstra é que ele tem uma complexidade de tempo e espaço quase linear.
  2. Podemos usar este algoritmo para calcular o caminho mais curto de um único vértice para todos os outros vértices e de um único vértice de origem para um único vértice de destino, parando o algoritmo assim que obtivermos a distância mais curta para o vértice de destino.
  3. Este algoritmo funciona apenas para gráficos ponderados direcionados e todas as arestas deste gráfico devem ser não negativas.

Apesar de ter múltiplas vantagens, o algoritmo de Dijkstra também apresenta algumas desvantagens, como:

  1. O Algoritmo de Dijkstra realiza uma exploração oculta que utiliza muito tempo durante o processo.
  2. Este algoritmo é impotente para lidar com arestas negativas.
  3. Como esse algoritmo segue para o grafo acíclico, ele não pode calcular o caminho mais curto exato.
  4. Também requer manutenção para manter um registro dos vértices que foram visitados.

Algumas aplicações do algoritmo de Dijkstra

O Algoritmo de Dijkstra tem várias aplicações no mundo real, algumas das quais são descritas abaixo:

    Serviços de mapeamento digital no Google Maps:Várias vezes tentamos encontrar a distância no Google Maps quer da nossa localização até ao local preferido mais próximo, quer de uma cidade para outra, o que compreende múltiplos percursos/caminhos que os ligam; entretanto, o aplicativo deverá exibir a distância mínima. Isso só é possível porque o algoritmo de Dijkstra ajuda o aplicativo a encontrar o caminho mais curto entre dois locais determinados ao longo do caminho. Vamos considerar os EUA como um gráfico onde as cidades/locais são representadas como vértices e as rotas entre duas cidades/locais são representadas como arestas. Então, com a ajuda do Algoritmo de Dijkstra, podemos calcular as rotas mais curtas entre quaisquer duas cidades/lugares.Aplicativos de redes sociais:Em muitos aplicativos como Facebook, Twitter, Instagram e outros, muitos de nós devemos ter observado que esses aplicativos sugerem a lista de amigos que um usuário específico pode conhecer. Como muitas empresas de mídia social implementam esse tipo de recurso de forma eficiente e eficaz, especificamente quando o sistema tem mais de um bilhão de usuários? A resposta a esta pergunta é o Algoritmo de Dijkstra. O Algoritmo de Dijkstra padrão é geralmente utilizado para estimar a menor distância entre os usuários medida através das conexões ou mutualidade entre eles. Quando a rede social é muito pequena, ela utiliza o Algoritmo de Dijkstra padrão além de alguns outros recursos para determinar os caminhos mais curtos. Porém, quando o gráfico é muito maior, o algoritmo padrão leva vários segundos para contar e, portanto, alguns algoritmos avançados são usados ​​como alternativa.Rede Telefônica:Como alguns de nós devem saber, numa rede telefónica, cada linha de transmissão tem uma largura de banda, 'b'. A largura de banda é a frequência mais alta que a linha de transmissão pode suportar. Em geral, se a frequência do sinal for maior em uma linha específica, o sinal será reduzido nessa linha. A largura de banda representa a quantidade de informação que pode ser transmitida pela linha. Consideremos uma cidade como um gráfico onde as estações de comutação são representadas pelos vértices, as linhas de transmissão são representadas pelas arestas e a largura de banda, 'b', é representada pelo peso das arestas. Assim, como podemos observar, a rede telefônica também pode cair na categoria do problema de menor distância e pode ser resolvida utilizando o Algoritmo de Dijkstra.Programa de voo:Suponha que uma pessoa precise de um software para preparar uma agenda de voos para os clientes. O agente tem acesso a um banco de dados com todos os voos e aeroportos. Além do número do voo, aeroporto de origem e destino, os voos também possuem horários de saída e chegada. Assim, para determinar o horário de chegada mais cedo ao destino selecionado a partir do aeroporto original e determinado horário de início, os agentes utilizam o Algoritmo de Dijkstra.Roteamento IP para encontrar o caminho mais curto aberto primeiro:Open Shortest Path First (abreviado como OSPF) é um protocolo de roteamento link-state usado para encontrar o melhor caminho entre o roteador de origem e de destino com a ajuda de seu próprio Shortest Path First. O Algoritmo de Dijkstra é amplamente utilizado nos protocolos de roteamento exigidos pelos roteadores para atualizar sua tabela de encaminhamento. O algoritmo fornece o caminho de custo mais curto do roteador de origem até os demais roteadores presentes na rede.Caminho Robótico:Hoje em dia, surgiram drones e robôs, alguns operados manualmente e outros automaticamente. Os drones e robôs que são operados automaticamente e utilizados para entregar os pacotes em um determinado local ou utilizados para qualquer tarefa específica são configurados com o módulo Algoritmo da Dijkstra para que sempre que a origem e o destino sejam conhecidos, o drone e o robô se moverão na direção ordenada seguindo o caminho mais curto mantendo ao mínimo o tempo de entrega dos pacotes.Designe o servidor de arquivos:O Algoritmo de Dijkstra também é usado para designar um servidor de arquivos em uma Rede Local (LAN). Suponha que seja necessário um período de tempo infinito para a transmissão dos arquivos de um computador para outro. Portanto, para minimizar o número de 'saltos' do servidor de arquivos para todos os outros computadores da rede, usaremos o Algoritmo de Dijkstra. Este algoritmo retornará o caminho mais curto entre as redes resultando no número mínimo de saltos.

A conclusão

  • No tutorial acima, primeiramente, entendemos os conceitos básicos do Graph junto com seus tipos e aplicações.
  • Aprendemos então sobre o Algoritmo de Dijkstra e sua história.
  • Também entendemos o funcionamento fundamental do Algoritmo de Dijkstra com a ajuda de um exemplo.
  • Depois disso, estudamos como escrever código para o Algoritmo de Dijkstra com a ajuda do Pseudocódigo.
  • Observamos sua implementação em linguagens de programação como C, C++, Java e Python com resultados e explicações adequadas.
  • Também entendemos a complexidade de tempo e espaço do algoritmo de Dijkstra.
  • Finalmente, discutimos as vantagens e desvantagens do algoritmo de Dijkstra e algumas de suas aplicações na vida real.