logo

NumPy em Python | Conjunto 2 (Avançado)

NumPy em Python | Conjunto 1 (Introdução) Este artigo discute alguns métodos mais avançados disponíveis no NumPy.
    Empilhamento:Várias matrizes podem ser empilhadas juntas ao longo de eixos diferentes.
      np.vstack:Para empilhar matrizes ao longo do eixo vertical. np.hstack:Para empilhar matrizes ao longo do eixo horizontal. np.column_stack:Para empilhar matrizes 1-D como colunas em matrizes 2-D. np.concatenar:Para empilhar matrizes ao longo do eixo especificado (o eixo é passado como argumento).
    Python
    import numpy as np a = np.array([[1 2] [3 4]]) b = np.array([[5 6] [7 8]]) # vertical stacking print('Vertical stacking:n' np.vstack((a b))) # horizontal stacking print('nHorizontal stacking:n' np.hstack((a b))) c = [5 6] # stacking columns print('nColumn stacking:n' np.column_stack((a c))) # concatenation method  print('nConcatenating to 2nd axis:n' np.concatenate((a b) 1)) 
    Output:
    Vertical stacking: [[1 2] [3 4] [5 6] [7 8]] Horizontal stacking: [[1 2 5 6] [3 4 7 8]] Column stacking: [[1 2 5] [3 4 6]] Concatenating to 2nd axis: [[1 2 5 6] [3 4 7 8]]
    Divisão:Para divisão temos estas funções:
      np.hsplit:Divida a matriz ao longo do eixo horizontal. np.vsplit:Divida a matriz ao longo do eixo vertical. np.array_split:Divida a matriz ao longo do eixo especificado.
    Python
    import numpy as np a = np.array([[1 3 5 7 9 11] [2 4 6 8 10 12]]) # horizontal splitting print('Splitting along horizontal axis into 2 parts:n' np.hsplit(a 2)) # vertical splitting print('nSplitting along vertical axis into 2 parts:n' np.vsplit(a 2)) 
    Output:
    Splitting along horizontal axis into 2 parts: [array([[1 3 5] [2 4 6]]) array([[ 7 9 11] [ 8 10 12]])] Splitting along vertical axis into 2 parts: [array([[ 1 3 5 7 9 11]]) array([[ 2 4 6 8 10 12]])]
    Radiodifusão:O termo transmissão descreve como o NumPy trata arrays com formatos diferentes durante operações aritméticas. Sujeito a certas restrições, o array menor é 'transmitido' pelo array maior para que tenham formatos compatíveis. A transmissão fornece um meio de vetorizar operações de array para que o loop ocorra em C em vez de Python. Isso é feito sem fazer cópias desnecessárias de dados e geralmente leva a implementações eficientes de algoritmos. Há também casos em que a transmissão é uma má ideia porque leva ao uso ineficiente da memória, o que retarda a computação. As operações NumPy geralmente são feitas elemento por elemento, o que requer que duas matrizes tenham exatamente o mesmo formato. A regra de transmissão do Numpy relaxa essa restrição quando as formas dos arrays atendem a certas restrições. A regra de transmissão: Para transmitir, o tamanho dos eixos finais de ambas as matrizes em uma operação deve ser do mesmo tamanho ou um deles deve ser um . Let us see some examples:
    A(2-D array): 4 x 3 B(1-D array): 3 Result : 4 x 3 
    A(4-D array): 7 x 1 x 6 x 1 B(3-D array): 3 x 1 x 5 Result : 7 x 3 x 6 x 5 
    But this would be a mismatch:
    A: 4 x 3 B: 4 
    The simplest broadcasting example occurs when an array and a scalar value are combined in an operation. Consider the example given below: Python
    import numpy as np a = np.array([1.0 2.0 3.0]) # Example 1 b = 2.0 print(a * b) # Example 2 c = [2.0 2.0 2.0] print(a * c) 
    Output:
    [ 2. 4. 6.] [ 2. 4. 6.]
    We can think of the scalar b being stretched during the arithmetic operation into an array with the same shape as a. The new elements in b as shown in above figure are simply copies of the original scalar. Although the stretching analogy is only conceptual. Numpy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible. Because Example 1 moves less memory (b is a scalar not an array) around during the multiplication it is about 10% faster than Example 2 using the standard numpy on Windows 2000 with one million element arrays! The figure below makes the concept more clear: NumPy em Python | Conjunto 2 (Avançado) In above example the scalar b is stretched to become an array of with the same shape as a so the shapes are compatible for element-by-element multiplication. Now let us see an example where both arrays get stretched. Python
    import numpy as np a = np.array([0.0 10.0 20.0 30.0]) b = np.array([0.0 1.0 2.0]) print(a[: np.newaxis] + b) 
    Output:
    [[ 0. 1. 2.] [ 10. 11. 12.] [ 20. 21. 22.] [ 30. 31. 32.]] 
    NumPy em Python | Conjunto 2 (Avançado)' hight='350' title=Em alguns casos, a transmissão estende ambas as matrizes para formar uma matriz de saída maior do que qualquer uma das matrizes iniciais. Trabalhando com data e hora: Numpy has core array data types which natively support datetime functionality. The data type is called datetime64 so named because datetime is already taken by the datetime library included in Python. Consider the example below for some examples: Python
    import numpy as np # creating a date today = np.datetime64('2017-02-12') print('Date is:' today) print('Year is:' np.datetime64(today 'Y')) # creating array of dates in a month dates = np.arange('2017-02' '2017-03' dtype='datetime64[D]') print('nDates of February 2017:n' dates) print('Today is February:' today in dates) # arithmetic operation on dates dur = np.datetime64('2017-05-22') - np.datetime64('2016-05-22') print('nNo. of days:' dur) print('No. of weeks:' np.timedelta64(dur 'W')) # sorting dates a = np.array(['2017-02-12' '2016-10-13' '2019-05-22'] dtype='datetime64') print('nDates in sorted order:' np.sort(a)) 
    Output:
    Date is: 2017-02-12 Year is: 2017 Dates of February 2017: ['2017-02-01' '2017-02-02' '2017-02-03' '2017-02-04' '2017-02-05' '2017-02-06' '2017-02-07' '2017-02-08' '2017-02-09' '2017-02-10' '2017-02-11' '2017-02-12' '2017-02-13' '2017-02-14' '2017-02-15' '2017-02-16' '2017-02-17' '2017-02-18' '2017-02-19' '2017-02-20' '2017-02-21' '2017-02-22' '2017-02-23' '2017-02-24' '2017-02-25' '2017-02-26' '2017-02-27' '2017-02-28'] Today is February: True No. of days: 365 days No. of weeks: 52 weeks Dates in sorted order: ['2016-10-13' '2017-02-12' '2019-05-22']
    Álgebra linear em NumPy:O módulo de Álgebra Linear do NumPy oferece vários métodos para aplicar álgebra linear em qualquer matriz numpy. Você pode encontrar:
    • rastreamento determinante de classificação, etc. de uma matriz.
    • próprios valores ou matrizes
    • produtos de matrizes e vetores (ponto interno externo etc. produto) exponenciação de matrizes
    • resolva equações lineares ou tensoriais e muito mais!
    Consider the example below which explains how we can use NumPy to do some matrix operations. Python
    import numpy as np A = np.array([[6 1 1] [4 -2 5] [2 8 7]]) print('Rank of A:' np.linalg.matrix_rank(A)) print('nTrace of A:' np.trace(A)) print('nDeterminant of A:' np.linalg.det(A)) print('nInverse of A:n' np.linalg.inv(A)) print('nMatrix A raised to power 3:n' np.linalg.matrix_power(A 3)) 
    Output:
    Rank of A: 3 Trace of A: 11 Determinant of A: -306.0 Inverse of A: [[ 0.17647059 -0.00326797 -0.02287582] [ 0.05882353 -0.13071895 0.08496732] [-0.11764706 0.1503268 0.05228758]] Matrix A raised to power 3: [[336 162 228] [406 162 469] [698 702 905]]
    Let us assume that we want to solve this linear equation set:
    x + 2*y = 8 3*x + 4*y = 18 
    This problem can be solved using linalg.solve method as shown in example below: Python
    import numpy as np # coefficients a = np.array([[1 2] [3 4]]) # constants b = np.array([8 18]) print('Solution of linear equations:' np.linalg.solve(a b)) 
    Output:
    Solution of linear equations: [ 2. 3.]
    Finally we see an example which shows how one can perform linear regression using least squares method. A linear regression line is of the form w1 x + w 2 = y e é a linha que minimiza a soma dos quadrados da distância de cada ponto de dados à linha. Portanto, dados n pares de dados (xi yi), os parâmetros que procuramos são w1 e w2 que minimizam o erro: NumPy em Python | Conjunto 2 (Avançado)' title= Let us have a look at the example below: Python
    import numpy as np import matplotlib.pyplot as plt # x co-ordinates x = np.arange(0 9) A = np.array([x np.ones(9)]) # linearly generated sequence y = [19 20 20.5 21.5 22 23 23 25.5 24] # obtaining the parameters of regression line w = np.linalg.lstsq(A.T y)[0] # plotting the line line = w[0]*x + w[1] # regression line plt.plot(x line 'r-') plt.plot(x y 'o') plt.show() 
    Output: ' title=
Portanto, isso leva à conclusão desta série de tutoriais do NumPy. NumPy é uma biblioteca de uso geral amplamente usada que está no centro de muitas outras bibliotecas de computação, como scipy scikit-learn tensorflow matplotlib opencv etc. Ter um conhecimento básico de NumPy ajuda a lidar com outras bibliotecas de nível superior de forma eficiente! Referências: Criar questionário