Você recebe dois números inteiros de base a (número de dígitos d tal que 1<= d <= 1000) and the index b (0 <= b <= 922*10^15). You have to find the last digit of a^b.
Exemplos:
Input : 3 10
Output : 9
Input : 6 2
Output : 6
Input : 150 53
Output : 0
Depois de tomar alguns exemplos, podemos notar o padrão abaixo.
Number | Last digits that repeat in cycle
1 | 1
2 | 4 8 6 2
3 | 9 7 1 3
4 | 6 4
5 | 5
6 | 6
7 | 9 3 1 7
8 | 4 2 6 8
9 | 1 9
Na tabela fornecida podemos ver que a duração máxima para repetição do ciclo é 4.
Exemplo: 2*2 = 4*2 = 8*2 = 16*2 = 32 o último dígito de 32 é 2, o que significa que depois de multiplicar 4 vezes o dígito se repete. Portanto, o algoritmo é muito simples.
Fonte : Brilhantes.org
Algoritmo:
- Desde número são muito grandes, nós os armazenamos como uma string.
- Pegue o último dígito na base a.
- Agora calcule b%4. Aqui b é muito grande.
- Se b%4==0 isso significa que b é completamente divisível por 4, então nosso expoente agora será exp = 4 porque multiplicando o número 4 vezes obtemos o último dígito de acordo com a tabela de ciclo no diagrama acima.
- Se b%4!=0 isso significa que b não é completamente divisível por 4, então nosso expoente agora será exp=b%4 porque multiplicando o expoente numérico vezes obtemos o último dígito de acordo com a tabela de ciclo no diagrama acima.
- Agora calcule ldigit = pow( last_digit_in_base exp ).
- O último dígito de a^b será ldigit%10.
Abaixo está a implementação do algoritmo acima.
C++
// C++ code to find last digit of a^b #include using namespace std; // Function to find b % a int Modulo(int a char b[]) { // Initialize result int mod = 0; // calculating mod of b with a to make // b like 0 <= b < a for (int i = 0; i < strlen(b); i++) mod = (mod * 10 + b[i] - '0') % a; return mod; // return modulo } // function to find last digit of a^b int LastDigit(char a[] char b[]) { int len_a = strlen(a) len_b = strlen(b); // if a and b both are 0 if (len_a == 1 && len_b == 1 && b[0] == '0' && a[0] == '0') return 1; // if exponent is 0 if (len_b == 1 && b[0] == '0') return 1; // if base is 0 if (len_a == 1 && a[0] == '0') return 0; // if exponent is divisible by 4 that means last // digit will be pow(a 4) % 10. // if exponent is not divisible by 4 that means last // digit will be pow(a b%4) % 10 int exp = (Modulo(4 b) == 0) ? 4 : Modulo(4 b); // Find last digit in 'a' and compute its exponent int res = pow(a[len_a - 1] - '0' exp); // Return last digit of result return res % 10; } // Driver program to run test case int main() { char a[] = '117' b[] = '3'; cout << LastDigit(a b); return 0; }
Java // Java code to find last digit of a^b import java.io.*; import java.math.*; class GFG { // Function to find b % a static int Modulo(int a char b[]) { // Initialize result int mod = 0; // calculating mod of b with a to make // b like 0 <= b < a for (int i = 0; i < b.length; i++) mod = (mod * 10 + b[i] - '0') % a; return mod; // return modulo } // Function to find last digit of a^b static int LastDigit(char a[] char b[]) { int len_a = a.length len_b = b.length; // if a and b both are 0 if (len_a == 1 && len_b == 1 && b[0] == '0' && a[0] == '0') return 1; // if exponent is 0 if (len_b == 1 && b[0] == '0') return 1; // if base is 0 if (len_a == 1 && a[0] == '0') return 0; // if exponent is divisible by 4 that means last // digit will be pow(a 4) % 10. // if exponent is not divisible by 4 that means last // digit will be pow(a b%4) % 10 int exp = (Modulo(4 b) == 0) ? 4 : Modulo(4 b); // Find last digit in 'a' and compute its exponent int res = (int)(Math.pow(a[len_a - 1] - '0' exp)); // Return last digit of result return res % 10; } // Driver program to run test case public static void main(String args[]) throws IOException { char a[] = '117'.toCharArray() b[] = { '3' }; System.out.println(LastDigit(a b)); } } // This code is contributed by Nikita Tiwari.
Python def last_digit(a b): a = int(a) b = int(b) # if a and b both are 0 if a == 0 and b == 0: return 1 # if exponent is 0 if b == 0: return 1 # if base is 0 if a == 0: return 0 # if exponent is divisible by 4 that means last # digit will be pow(a 4) % 10. # if exponent is not divisible by 4 that means last # digit will be pow(a b%4) % 10 if b % 4 == 0: res = 4 else: res = b % 4 # Find last digit in 'a' and compute its exponent num = pow(a res) # Return last digit of num return num % 10 a = '117' b = '3' print(last_digit(ab)) # This code is contributed by Naimish14.
C# // C# code to find last digit of a^b. using System; class GFG { // Function to find b % a static int Modulo(int a char[] b) { // Initialize result int mod = 0; // calculating mod of b with a // to make b like 0 <= b < a for (int i = 0; i < b.Length; i++) mod = (mod * 10 + b[i] - '0') % a; // return modulo return mod; } // Function to find last digit of a^b static int LastDigit(char[] a char[] b) { int len_a = a.Length len_b = b.Length; // if a and b both are 0 if (len_a == 1 && len_b == 1 && b[0] == '0' && a[0] == '0') return 1; // if exponent is 0 if (len_b == 1 && b[0] == '0') return 1; // if base is 0 if (len_a == 1 && a[0] == '0') return 0; // if exponent is divisible by 4 // that means last digit will be // pow(a 4) % 10. if exponent is //not divisible by 4 that means last // digit will be pow(a b%4) % 10 int exp = (Modulo(4 b) == 0) ? 4 : Modulo(4 b); // Find last digit in 'a' and // compute its exponent int res = (int)(Math.Pow(a[len_a - 1] - '0' exp)); // Return last digit of result return res % 10; } // Driver program to run test case public static void Main() { char[] a = '117'.ToCharArray() b = { '3' }; Console.Write(LastDigit(a b)); } } // This code is contributed by nitin mittal.
JavaScript <script> // Javascript code to find last digit of a^b // Function to find b % a function Modulo(a b) { // Initialize result let mod = 0; // calculating mod of b with a to make // b like 0 <= b < a for (let i = 0; i < b.length; i++) mod = (mod * 10 + b[i] - '0') % a; return mod; // return modulo } // function to find last digit of a^b function LastDigit(a b) { let len_a = a.length; let len_b = b.length; // if a and b both are 0 if (len_a == 1 && len_b == 1 && b[0] == '0' && a[0] == '0') return 1; // if exponent is 0 if (len_b == 1 && b[0] == '0') return 1; // if base is 0 if (len_a == 1 && a[0] == '0') return 0; // if exponent is divisible by 4 that // means last digit will be pow(a 4) // % 10. if exponent is not divisible // by 4 that means last digit will be // pow(a b%4) % 10 exp = (Modulo(4 b) == 0) ? 4 : Modulo(4 b); // Find last digit in 'a' and compute // its exponent res = Math.pow(a[len_a - 1] - '0' exp); // Return last digit of result return res % 10; } // Driver program to run test case let a = '117'; let b = '3'; document.write(LastDigit(a b)); // This code is contributed by _saurabh_jaiswal </script>
PHP // php code to find last digit of a^b // Function to find b % a function Modulo($a $b) { // Initialize result $mod = 0; // calculating mod of b with a to make // b like 0 <= b < a for ($i = 0; $i < strlen($b); $i++) $mod = ($mod * 10 + $b[$i] - '0') % $a; return $mod; // return modulo } // function to find last digit of a^b function LastDigit($a $b) { $len_a = strlen($a); $len_b = strlen($b); // if a and b both are 0 if ($len_a == 1 && $len_b == 1 && $b[0] == '0' && $a[0] == '0') return 1; // if exponent is 0 if ($len_b == 1 && $b[0] == '0') return 1; // if base is 0 if ($len_a == 1 && $a[0] == '0') return 0; // if exponent is divisible by 4 that // means last digit will be pow(a 4) // % 10. if exponent is not divisible // by 4 that means last digit will be // pow(a b%4) % 10 $exp = (Modulo(4 $b) == 0) ? 4 : Modulo(4 $b); // Find last digit in 'a' and compute // its exponent $res = pow($a[$len_a - 1] - '0' $exp); // Return last digit of result return $res % 10; } // Driver program to run test case $a = '117'; $b = '3'; echo LastDigit($a $b); // This code is contributed by nitin mittal. ?> Saída :
bytes python para string
3
Este artigo foi revisado pela equipe geeksforgeeks.