Dado um cadeia de caracteres a tarefa é encontrar substring não sobreposta de repetição mais longa nele. Em outras palavras, encontre 2 substrings idênticas de comprimento máximo que não se sobrepõem. Retorne -1 se tal string não existir.
Observação: Múltiplas respostas são possíveis, mas temos que retornar o substring cujo primeira ocorrência é anterior.
Exemplos:
Entrada: s = 'acdcdcdc'
Saída: 'AC/DC'
Explicação: A string 'acdc' é a substring mais longa de s que se repete, mas não se sobrepõe.Entrada: s = 'geeksforgeeks'
Saída: 'geeks'
Explicação: A string 'geeks' é a subString mais longa de s que se repete, mas não se sobrepõe.
Índice
- Usando o Método de Força Bruta - O(n^3) Tempo e O(n) Espaço
- Usando DP de cima para baixo (memoização) - O(n^2) Tempo e O(n^2) Espaço
- Usando DP Bottom-Up (Tabulação) - Tempo O(n^2) e Espaço O(n^2)
- Usando DP otimizado para espaço – O(n^2) Tempo e O(n) Espaço
Usando o Método de Força Bruta - O(n^3) Tempo e O(n) Espaço
C++A ideia é gerar todos os possíveis substrings e verifique se a substring existe no restante corda. Se substring existir e seu comprimento é maior do que responder substring e definir responder para a substring atual.
// C++ program to find longest repeating // and non-overlapping substring // using recursion #include using namespace std; string longestSubstring(string& s) { int n = s.length(); string ans = ''; int len = 0; int i = 0 j = 0; while (i < n && j < n) { string curr = s.substr(i j - i + 1); // If substring exists compare its length // with ans if (s.find(curr j + 1) != string::npos && j - i + 1 > len) { len = j - i + 1; ans = curr; } // Otherwise increment i else i++; j++; } return len > 0 ? ans : '-1'; } int main() { string s = 'geeksforgeeks'; cout << longestSubstring(s) << endl; return 0; }
Java // Java program to find longest repeating // and non-overlapping substring // using recursion class GfG { static String longestSubstring(String s) { int n = s.length(); String ans = ''; int len = 0; int i = 0 j = 0; while (i < n && j < n) { String curr = s.substring(i j + 1); // If substring exists compare its length // with ans if (s.indexOf(curr j + 1) != -1 && j - i + 1 > len) { len = j - i + 1; ans = curr; } // Otherwise increment i else i++; j++; } return len > 0 ? ans : '-1'; } public static void main(String[] args) { String s = 'geeksforgeeks'; System.out.println(longestSubstring(s)); } }
Python # Python program to find longest repeating # and non-overlapping substring # using recursion def longestSubstring(s): n = len(s) ans = '' lenAns = 0 i j = 0 0 while i < n and j < n: curr = s[i:j + 1] # If substring exists compare its length # with ans if s.find(curr j + 1) != -1 and j - i + 1 > lenAns: lenAns = j - i + 1 ans = curr # Otherwise increment i else: i += 1 j += 1 if lenAns > 0: return ans return '-1' if __name__ == '__main__': s = 'geeksforgeeks' print(longestSubstring(s))
C# // C# program to find longest repeating // and non-overlapping substring // using recursion using System; class GfG { static string longestSubstring(string s) { int n = s.Length; string ans = ''; int len = 0; int i = 0 j = 0; while (i < n && j < n) { string curr = s.Substring(i j - i + 1); // If substring exists compare its length // with ans if (s.IndexOf(curr j + 1) != -1 && j - i + 1 > len) { len = j - i + 1; ans = curr; } // Otherwise increment i else i++; j++; } return len > 0 ? ans : '-1'; } static void Main(string[] args) { string s = 'geeksforgeeks'; Console.WriteLine(longestSubstring(s)); } }
JavaScript // JavaScript program to find longest repeating // and non-overlapping substring // using recursion function longestSubstring(s) { const n = s.length; let ans = ''; let len = 0; let i = 0 j = 0; while (i < n && j < n) { const curr = s.substring(i j + 1); // If substring exists compare its length // with ans if (s.indexOf(curr j + 1) !== -1 && j - i + 1 > len) { len = j - i + 1; ans = curr; } // Otherwise increment i else i++; j++; } return len > 0 ? ans : '-1'; } const s = 'geeksforgeeks'; console.log(longestSubstring(s));
Saída
geeks
Usando DP de cima para baixo (memoização) - O(n^2) Tempo e O(n^2) Espaço
A abordagem é calcular o sufixo de repetição mais longo para todos os prefixos pares no cadeia de caracteres . Para índices eu e j se s[i] == s[j] então recursivamente calcular sufixo (i+1 j+1) e definir sufixo (eu j) como min(sufixo(i+1 j+1) + 1 j - i - 1) para evitar sobreposição . Se os caracteres não corresponderem definir sufixo (i j) = 0.
Observação:
- Para evitar sobreposições, temos que garantir que o comprimento do sufixo é menor que (j-i) a qualquer momento.
- O valor máximo de sufixo (eu j) fornece o comprimento da substring de repetição mais longa e a própria substring pode ser encontrada usando o comprimento e o índice inicial do sufixo comum.
- sufixo (eu j) armazena o comprimento do sufixo comum mais longo entre os índices eu e j garantindo isso não excede j - i - 1 para evitar sobreposição.
// C++ program to find longest repeating // and non-overlapping substring // using memoization #include using namespace std; int findSuffix(int i int j string &s vector<vector<int>> &memo) { // base case if (j == s.length()) return 0; // return memoized value if (memo[i][j] != -1) return memo[i][j]; // if characters match if (s[i] == s[j]) { memo[i][j] = 1 + min(findSuffix(i + 1 j + 1 s memo) j - i - 1); } else { memo[i][j] = 0; } return memo[i][j]; } string longestSubstring(string s) { int n = s.length(); vector<vector<int>> memo(n vector<int>(n -1)); // find length of non-overlapping // substrings for all pairs (ij) for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { findSuffix(i j s memo); } } string ans = ''; int ansLen = 0; // If length of suffix is greater // than ansLen update ans and ansLen for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (memo[i][j] > ansLen) { ansLen = memo[i][j]; ans = s.substr(i ansLen); } } } return ansLen > 0 ? ans : '-1'; } int main() { string s = 'geeksforgeeks'; cout << longestSubstring(s) << endl; return 0; }
Java // Java program to find longest repeating // and non-overlapping substring // using memoization import java.util.Arrays; class GfG { static int findSuffix(int i int j String s int[][] memo) { // base case if (j == s.length()) return 0; // return memoized value if (memo[i][j] != -1) return memo[i][j]; // if characters match if (s.charAt(i) == s.charAt(j)) { memo[i][j] = 1 + Math.min(findSuffix(i + 1 j + 1 s memo) j - i - 1); } else { memo[i][j] = 0; } return memo[i][j]; } static String longestSubstring(String s) { int n = s.length(); int[][] memo = new int[n][n]; for (int[] row : memo) { Arrays.fill(row -1); } // find length of non-overlapping // substrings for all pairs (i j) for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { findSuffix(i j s memo); } } String ans = ''; int ansLen = 0; // If length of suffix is greater // than ansLen update ans and ansLen for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (memo[i][j] > ansLen) { ansLen = memo[i][j]; ans = s.substring(i i + ansLen); } } } return ansLen > 0 ? ans : '-1'; } public static void main(String[] args) { String s = 'geeksforgeeks'; System.out.println(longestSubstring(s)); } }
Python # Python program to find longest repeating # and non-overlapping substring # using memoization def findSuffix(i j s memo): # base case if j == len(s): return 0 # return memoized value if memo[i][j] != -1: return memo[i][j] # if characters match if s[i] == s[j]: memo[i][j] = 1 + min(findSuffix(i + 1 j + 1 s memo) j - i - 1) else: memo[i][j] = 0 return memo[i][j] def longestSubstring(s): n = len(s) memo = [[-1] * n for _ in range(n)] # find length of non-overlapping # substrings for all pairs (i j) for i in range(n): for j in range(i + 1 n): findSuffix(i j s memo) ans = '' ansLen = 0 # If length of suffix is greater # than ansLen update ans and ansLen for i in range(n): for j in range(i + 1 n): if memo[i][j] > ansLen: ansLen = memo[i][j] ans = s[i:i + ansLen] if ansLen > 0: return ans return '-1' if __name__ == '__main__': s = 'geeksforgeeks' print(longestSubstring(s))
C# // C# program to find longest repeating // and non-overlapping substring // using memoization using System; class GfG { static int findSuffix(int i int j string s int[ ] memo) { // base case if (j == s.Length) return 0; // return memoized value if (memo[i j] != -1) return memo[i j]; // if characters match if (s[i] == s[j]) { memo[i j] = 1 + Math.Min(findSuffix(i + 1 j + 1 s memo) j - i - 1); } else { memo[i j] = 0; } return memo[i j]; } static string longestSubstring(string s) { int n = s.Length; int[ ] memo = new int[n n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { memo[i j] = -1; } } // find length of non-overlapping // substrings for all pairs (i j) for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { findSuffix(i j s memo); } } string ans = ''; int ansLen = 0; // If length of suffix is greater // than ansLen update ans and ansLen for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (memo[i j] > ansLen) { ansLen = memo[i j]; ans = s.Substring(i ansLen); } } } return ansLen > 0 ? ans : '-1'; } static void Main(string[] args) { string s = 'geeksforgeeks'; Console.WriteLine(longestSubstring(s)); } }
JavaScript // JavaScript program to find longest repeating // and non-overlapping substring // using memoization function findSuffix(i j s memo) { // base case if (j === s.length) return 0; // return memoized value if (memo[i][j] !== -1) return memo[i][j]; // if characters match if (s[i] === s[j]) { memo[i][j] = 1 + Math.min(findSuffix(i + 1 j + 1 s memo) j - i - 1); } else { memo[i][j] = 0; } return memo[i][j]; } function longestSubstring(s) { const n = s.length; const memo = Array.from({length : n} () => Array(n).fill(-1)); // find length of non-overlapping // substrings for all pairs (i j) for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { findSuffix(i j s memo); } } let ans = ''; let ansLen = 0; // If length of suffix is greater // than ansLen update ans and ansLen for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { if (memo[i][j] > ansLen) { ansLen = memo[i][j]; ans = s.substring(i i + ansLen); } } } return ansLen > 0 ? ans : '-1'; } const s = 'geeksforgeeks'; console.log(longestSubstring(s));
Saída
geeks
Usando DP Bottom-Up (Tabulação) - Tempo O(n^2) e Espaço O(n^2)
C++A ideia é criar uma matriz 2D de tamanho (n+1)*(n+1) e calcule os sufixos de repetição mais longos para todos os índices pares (eu j) iterativamente. Partimos do fim da string e trabalhe de trás para frente para preencher a tabela. Para cada (eu j) se s[i] == s[j] nós definimos sufixo[i][j] para min(sufixo[i+1][j+1]+1 j-i-1) para evitar sobreposição; de outra forma sufixo[i][j] = 0.
// C++ program to find longest repeating // and non-overlapping substring // using tabulation #include using namespace std; string longestSubstring(string s) { int n = s.length(); vector<vector<int>> dp(n+1 vector<int>(n+1 0)); string ans = ''; int ansLen = 0; // find length of non-overlapping // substrings for all pairs (ij) for (int i=n-1; i>=0; i--) { for (int j=n-1; j>i; j--) { // if characters match set value // and compare with ansLen. if (s[i]==s[j]) { dp[i][j] = 1 + min(dp[i+1][j+1] j-i-1); if (dp[i][j]>=ansLen) { ansLen = dp[i][j]; ans = s.substr(i ansLen); } } } } return ansLen>0?ans:'-1'; } int main() { string s = 'geeksforgeeks'; cout << longestSubstring(s) << endl; return 0; }
Java // Java program to find longest repeating // and non-overlapping substring // using tabulation class GfG { static String longestSubstring(String s) { int n = s.length(); int[][] dp = new int[n + 1][n + 1]; String ans = ''; int ansLen = 0; // find length of non-overlapping // substrings for all pairs (i j) for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j > i; j--) { // if characters match set value // and compare with ansLen. if (s.charAt(i) == s.charAt(j)) { dp[i][j] = 1 + Math.min(dp[i + 1][j + 1] j - i - 1); if (dp[i][j] >= ansLen) { ansLen = dp[i][j]; ans = s.substring(i i + ansLen); } } } } return ansLen > 0 ? ans : '-1'; } public static void main(String[] args) { String s = 'geeksforgeeks'; System.out.println(longestSubstring(s)); } }
Python # Python program to find longest repeating # and non-overlapping substring # using tabulation def longestSubstring(s): n = len(s) dp = [[0] * (n + 1) for _ in range(n + 1)] ans = '' ansLen = 0 # find length of non-overlapping # substrings for all pairs (i j) for i in range(n - 1 -1 -1): for j in range(n - 1 i -1): # if characters match set value # and compare with ansLen. if s[i] == s[j]: dp[i][j] = 1 + min(dp[i + 1][j + 1] j - i - 1) if dp[i][j] >= ansLen: ansLen = dp[i][j] ans = s[i:i + ansLen] return ans if ansLen > 0 else '-1' if __name__ == '__main__': s = 'geeksforgeeks' print(longestSubstring(s))
C# // C# program to find longest repeating // and non-overlapping substring // using tabulation using System; class GfG { static string longestSubstring(string s) { int n = s.Length; int[] dp = new int[n + 1 n + 1]; string ans = ''; int ansLen = 0; // find length of non-overlapping // substrings for all pairs (i j) for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j > i; j--) { // if characters match set value // and compare with ansLen. if (s[i] == s[j]) { dp[i j] = 1 + Math.Min(dp[i + 1 j + 1] j - i - 1); if (dp[i j] >= ansLen) { ansLen = dp[i j]; ans = s.Substring(i ansLen); } } } } return ansLen > 0 ? ans : '-1'; } static void Main(string[] args) { string s = 'geeksforgeeks'; Console.WriteLine(longestSubstring(s)); } }
JavaScript // JavaScript program to find longest repeating // and non-overlapping substring // using tabulation function longestSubstring(s) { const n = s.length; const dp = Array.from({ length: n + 1 } () => Array(n + 1).fill(0)); let ans = ''; let ansLen = 0; // find length of non-overlapping // substrings for all pairs (i j) for (let i = n - 1; i >= 0; i--) { for (let j = n - 1; j > i; j--) { // if characters match set value // and compare with ansLen. if (s[i] === s[j]) { dp[i][j] = 1 + Math.min(dp[i + 1][j + 1] j - i - 1); if (dp[i][j] >= ansLen) { ansLen = dp[i][j]; ans = s.substring(i i + ansLen); } } } } return ansLen > 0 ? ans : '-1'; } const s = 'geeksforgeeks'; console.log(longestSubstring(s));
Saída
geeks
Usando DP otimizado para espaço – O(n^2) Tempo e O(n) Espaço
C++A ideia é usar um matriz 1D única em vez de um Matriz 2D acompanhando apenas o 'próxima linha' valores necessários para calcular sufixo[i][j]. Como cada valor s sufixo[i][j] depende apenas de sufixo[i+1][j+1] na linha abaixo podemos manter os valores da linha anterior em um array 1D e atualizá-los iterativamente para cada linha.
// C++ program to find longest repeating // and non-overlapping substring // using space optimised #include using namespace std; string longestSubstring(string s) { int n = s.length(); vector<int> dp(n+10); string ans = ''; int ansLen = 0; // find length of non-overlapping // substrings for all pairs (ij) for (int i=n-1; i>=0; i--) { for (int j=i; j<n; j++) { // if characters match set value // and compare with ansLen. if (s[i]==s[j]) { dp[j] = 1 + min(dp[j+1] j-i-1); if (dp[j]>=ansLen) { ansLen = dp[j]; ans = s.substr(i ansLen); } } else dp[j] = 0; } } return ansLen>0?ans:'-1'; } int main() { string s = 'geeksforgeeks'; cout << longestSubstring(s) << endl; return 0; }
Java // Java program to find longest repeating // and non-overlapping substring // using space optimised class GfG { static String longestSubstring(String s) { int n = s.length(); int[] dp = new int[n + 1]; String ans = ''; int ansLen = 0; // find length of non-overlapping // substrings for all pairs (i j) for (int i = n - 1; i >= 0; i--) { for (int j = i; j < n; j++) { // if characters match set value // and compare with ansLen. if (s.charAt(i) == s.charAt(j)) { dp[j] = 1 + Math.min(dp[j + 1] j - i - 1); if (dp[j] >= ansLen) { ansLen = dp[j]; ans = s.substring(i i + ansLen); } } else { dp[j] = 0; } } } return ansLen > 0 ? ans : '-1'; } public static void main(String[] args) { String s = 'geeksforgeeks'; System.out.println(longestSubstring(s)); } }
Python # Python program to find longest repeating # and non-overlapping substring # using space optimised def longestSubstring(s): n = len(s) dp = [0] * (n + 1) ans = '' ansLen = 0 # find length of non-overlapping # substrings for all pairs (i j) for i in range(n - 1 -1 -1): for j in range(i n): # if characters match set value # and compare with ansLen. if s[i] == s[j]: dp[j] = 1 + min(dp[j + 1] j - i - 1) if dp[j] >= ansLen: ansLen = dp[j] ans = s[i:i + ansLen] else: dp[j] = 0 return ans if ansLen > 0 else '-1' if __name__ == '__main__': s = 'geeksforgeeks' print(longestSubstring(s))
C# // C# program to find longest repeating // and non-overlapping substring // using space optimised using System; class GfG { static string longestSubstring(string s) { int n = s.Length; int[] dp = new int[n + 1]; string ans = ''; int ansLen = 0; // find length of non-overlapping // substrings for all pairs (i j) for (int i = n - 1; i >= 0; i--) { for (int j = i; j < n; j++) { // if characters match set value // and compare with ansLen. if (s[i] == s[j]) { dp[j] = 1 + Math.Min(dp[j + 1] j - i - 1); if (dp[j] >= ansLen) { ansLen = dp[j]; ans = s.Substring(i ansLen); } } else { dp[j] = 0; } } } return ansLen > 0 ? ans : '-1'; } static void Main(string[] args) { string s = 'geeksforgeeks'; Console.WriteLine(longestSubstring(s)); } }
JavaScript // JavaScript program to find longest repeating // and non-overlapping substring // using space optimised function longestSubstring(s) { const n = s.length; const dp = new Array(n + 1).fill(0); let ans = ''; let ansLen = 0; // find length of non-overlapping // substrings for all pairs (i j) for (let i = n - 1; i >= 0; i--) { for (let j = i; j < n; j++) { // if characters match set value // and compare with ansLen. if (s[i] === s[j]) { dp[j] = 1 + Math.min(dp[j + 1] j - i - 1); if (dp[j] >= ansLen) { ansLen = dp[j]; ans = s.substring(i i + ansLen); } } else { dp[j] = 0; } } } return ansLen > 0 ? ans : '-1'; } const s = 'geeksforgeeks'; console.log(longestSubstring(s));
Saída
geeks
Artigos relacionados:
- Substring comum mais longa