Dado um número positivo N, precisamos chegar a 1 no número mínimo de etapas, onde uma etapa é definida como a conversão de N em (N-1) ou a conversão de N em um dos maiores divisores.
Formalmente, se estivermos em N, então em 1 etapa podemos chegar a (N - 1) ou se N = u*v então podemos chegar a max(u v) onde u > 1 e v > 1.
Exemplos:
Input : N = 17 Output : 4 We can reach to 1 in 4 steps as shown below 17 -> 16(from 17 - 1) -> 4(from 4 * 4) -> 2(from 2 * 2) -> 1(from 2 - 1) Input : N = 50 Output : 5 We can reach to 1 in 5 steps as shown below 50 -> 10(from 5 * 10) -> 5(from 2 * 5) -> 4(from 5 - 1) -> 2(from 2 *2) -> 1(from 2 - 1)
Podemos resolver este problema usando a pesquisa ampla primeiro porque funciona nível por nível, então chegaremos a 1 no número mínimo de etapas onde o próximo nível para N contém (N - 1) e fatores próprios maiores de N.
O procedimento BFS completo será o seguinte: Primeiro, enviaremos N com as etapas 0 para a fila de dados e, em seguida, em cada nível, enviaremos os elementos do próximo nível com 1 etapa a mais do que os elementos do nível anterior. Desta forma, quando 1 for retirado da fila, ele conterá um número mínimo de etapas que será o nosso resultado final.
No código abaixo, uma fila de uma estrutura do tipo 'dados' é usada, que armazena valor e passos de N nela, outro conjunto de tipo inteiro é usado para evitar que enviemos o mesmo elemento mais de uma vez, o que pode levar a um loop infinito. Portanto, em cada etapa, colocamos o valor em set depois de colocá-lo na fila para que o valor não seja visitado mais de uma vez.
Por favor, veja o código abaixo para melhor compreensão
C++// C++ program to get minimum step to reach 1 // under given constraints #include using namespace std; // structure represent one node in queue struct data { int val; int steps; data(int val int steps) : val(val) steps(steps) {} }; // method returns minimum step to reach one int minStepToReachOne(int N) { queue<data> q; q.push(data(N 0)); // set is used to visit numbers so that they // won't be pushed in queue again set<int> st; // loop until we reach to 1 while (!q.empty()) { data t = q.front(); q.pop(); // if current data value is 1 return its // steps from N if (t.val == 1) return t.steps; // check curr - 1 only if it not visited yet if (st.find(t.val - 1) == st.end()) { q.push(data(t.val - 1 t.steps + 1)); st.insert(t.val - 1); } // loop from 2 to sqrt(value) for its divisors for (int i = 2; i*i <= t.val; i++) { // check divisor only if it is not visited yet // if i is divisor of val then val / i will // be its bigger divisor if (t.val % i == 0 && st.find(t.val / i) == st.end()) { q.push(data(t.val / i t.steps + 1)); st.insert(t.val / i); } } } } // Driver code to test above methods int main() { int N = 17; cout << minStepToReachOne(N) << endl; }
Java // Java program to get minimum step to reach 1 // under given constraints import java.util.*; class GFG { // structure represent one node in queue static class data { int val; int steps; public data(int val int steps) { this.val = val; this.steps = steps; } }; // method returns minimum step to reach one static int minStepToReachOne(int N) { Queue<data> q = new LinkedList<>(); q.add(new data(N 0)); // set is used to visit numbers so that they // won't be pushed in queue again HashSet<Integer> st = new HashSet<Integer>(); // loop until we reach to 1 while (!q.isEmpty()) { data t = q.peek(); q.remove(); // if current data value is 1 return its // steps from N if (t.val == 1) return t.steps; // check curr - 1 only if it not visited yet if (!st.contains(t.val - 1)) { q.add(new data(t.val - 1 t.steps + 1)); st.add(t.val - 1); } // loop from 2 to Math.sqrt(value) for its divisors for (int i = 2; i*i <= t.val; i++) { // check divisor only if it is not visited yet // if i is divisor of val then val / i will // be its bigger divisor if (t.val % i == 0 && !st.contains(t.val / i) ) { q.add(new data(t.val / i t.steps + 1)); st.add(t.val / i); } } } return -1; } // Driver code public static void main(String[] args) { int N = 17; System.out.print(minStepToReachOne(N) +'n'); } } // This code is contributed by 29AjayKumar
Python3 # Python3 program to get minimum step # to reach 1 under given constraints # Structure represent one node in queue class data: def __init__(self val steps): self.val = val self.steps = steps # Method returns minimum step to reach one def minStepToReachOne(N): q = [] q.append(data(N 0)) # Set is used to visit numbers # so that they won't be pushed # in queue again st = set() # Loop until we reach to 1 while (len(q)): t = q.pop(0) # If current data value is 1 # return its steps from N if (t.val == 1): return t.steps # Check curr - 1 only if # it not visited yet if not (t.val - 1) in st: q.append(data(t.val - 1 t.steps + 1)) st.add(t.val - 1) # Loop from 2 to Math.sqrt(value) # for its divisors for i in range(2 int((t.val) ** 0.5) + 1): # Check divisor only if it is not # visited yet if i is divisor of val # then val / i will be its bigger divisor if (t.val % i == 0 and (t.val / i) not in st): q.append(data(t.val / i t.steps + 1)) st.add(t.val / i) return -1 # Driver code N = 17 print(minStepToReachOne(N)) # This code is contributed by phasing17
C# // C# program to get minimum step to reach 1 // under given constraints using System; using System.Collections.Generic; class GFG { // structure represent one node in queue class data { public int val; public int steps; public data(int val int steps) { this.val = val; this.steps = steps; } }; // method returns minimum step to reach one static int minStepToReachOne(int N) { Queue<data> q = new Queue<data>(); q.Enqueue(new data(N 0)); // set is used to visit numbers so that they // won't be pushed in queue again HashSet<int> st = new HashSet<int>(); // loop until we reach to 1 while (q.Count != 0) { data t = q.Peek(); q.Dequeue(); // if current data value is 1 return its // steps from N if (t.val == 1) return t.steps; // check curr - 1 only if it not visited yet if (!st.Contains(t.val - 1)) { q.Enqueue(new data(t.val - 1 t.steps + 1)); st.Add(t.val - 1); } // loop from 2 to Math.Sqrt(value) for its divisors for (int i = 2; i*i <= t.val; i++) { // check divisor only if it is not visited yet // if i is divisor of val then val / i will // be its bigger divisor if (t.val % i == 0 && !st.Contains(t.val / i) ) { q.Enqueue(new data(t.val / i t.steps + 1)); st.Add(t.val / i); } } } return -1; } // Driver code public static void Main(String[] args) { int N = 17; Console.Write(minStepToReachOne(N) +'n'); } } // This code is contributed by 29AjayKumar
JavaScript <script> // Javascript program to get minimum step // to reach 1 under given constraints // Structure represent one node in queue class data { constructor(val steps) { this.val = val; this.steps = steps; } } // Method returns minimum step to reach one function minStepToReachOne(N) { let q = []; q.push(new data(N 0)); // Set is used to visit numbers // so that they won't be pushed // in queue again let st = new Set(); // Loop until we reach to 1 while (q.length != 0) { let t = q.shift(); // If current data value is 1 // return its steps from N if (t.val == 1) return t.steps; // Check curr - 1 only if // it not visited yet if (!st.has(t.val - 1)) { q.push(new data(t.val - 1 t.steps + 1)); st.add(t.val - 1); } // Loop from 2 to Math.sqrt(value) // for its divisors for(let i = 2; i*i <= t.val; i++) { // Check divisor only if it is not // visited yet if i is divisor of val // then val / i will be its bigger divisor if (t.val % i == 0 && !st.has(t.val / i)) { q.push(new data(t.val / i t.steps + 1)); st.add(t.val / i); } } } return -1; } // Driver code let N = 17; document.write(minStepToReachOne(N) + '
'); // This code is contributed by rag2127 </script>
Saída:
4