Nesta seção, escreveremos programas Java para determinar a potência de um número. Para obter a potência de um número, multiplique o número pelo seu expoente.
Exemplo:
Suponha que a base seja 5 e o expoente seja 4. Para obter a potência de um número, multiplique-o por ele mesmo quatro vezes, ou seja, (5 * 5 * 5 * 5 = 625).
Como determinar o poder de um número?
- Base e expoente devem ser lidos ou inicializados.
- Pegue outra potência variável e defina-a como 1 para salvar o resultado.
- Multiplique a base pela potência e armazene o resultado em potência usando o loop for ou while.
- Repita a etapa 3 até que o expoente seja igual a zero.
- Imprima a saída.
Métodos para encontrar a potência de um número
Existem vários métodos para determinar a potência de um número:
java estático
- Usando Java para Loop
- Usando Java enquanto Loop
- Usando recursão
- Usando o método Math.pow()
- Usando manipulação de bits
1. Usando Java for Loop
Um loop for pode ser usado para calcular a potência de um número multiplicando a base por ela mesma repetidamente.
PowerOfNumber1.java
public class PowerOfNumber1 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; for (int i = 0; i <exponent; i++) { result *="base;" } system.out.println(base + ' raised to the power of exponent is result); < pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>2. Using Java while Loop</h3> <p>A while loop may similarly be used to achieve the same result by multiplying the base many times.</p> <p> <strong>PowerOfNumber2.java</strong> </p> <pre> public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent > 0) { result *= base; exponent--; } System.out.println(base + ' raised to the power of ' + power + ' is ' + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>3. Using Recursion:</h3> <p>Recursion is the process of breaking down an issue into smaller sub-problems. Here's an example of how recursion may be used to compute a number's power.</p> <p> <strong>PowerOfNumber3.java</strong> </p> <pre> public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>4. Using Math.pow() Method</h3> <p>The java.lang package's Math.pow() function computes the power of an integer directly.</p> <p> <strong>PowerOfNumber4.java</strong> </p> <pre> public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 3.0 is 8.0 </pre> <h3>Handling Negative Exponents:</h3> <p>When dealing with negative exponents, the idea of reciprocal powers might be useful. For instance, x^(-n) equals 1/x^n. Here's an example of dealing with negative exponents.</p> <p> <strong>PowerOfNumber5.java</strong> </p> <pre> public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { if (exponent >= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;></pre></exponent;>
2. Usando Java enquanto Loop
Um loop while pode ser usado de forma semelhante para obter o mesmo resultado multiplicando a base várias vezes.
PowerOfNumber2.java
public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent > 0) { result *= base; exponent--; } System.out.println(base + ' raised to the power of ' + power + ' is ' + result); } }
Saída:
como revelar aplicativos ocultos
2 raised to the power of 3 is 8
3. Usando recursão:
A recursão é o processo de dividir um problema em subproblemas menores. Aqui está um exemplo de como a recursão pode ser usada para calcular a potência de um número.
PowerOfNumber3.java
public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } }
Saída:
2 raised to the power of 3 is 8
4. Usando o método Math.pow()
A função Math.pow() do pacote java.lang calcula a potência de um número inteiro diretamente.
PowerOfNumber4.java
látex derivado parcial
public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } }
Saída:
2.0 raised to the power of 3.0 is 8.0
Tratamento de expoentes negativos:
Ao lidar com expoentes negativos, a ideia de potências recíprocas pode ser útil. Por exemplo, x^(-n) é igual a 1/x^n. Aqui está um exemplo de como lidar com expoentes negativos.
PowerOfNumber5.java
public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { if (exponent >= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;>
Otimizando para expoentes inteiros:
Ao lidar com expoentes inteiros, você pode otimizar o cálculo iterando apenas tantas vezes quanto o valor do expoente. Diminui o número de multiplicações desnecessárias.
PowerOfNumber6.java
public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;>
5. Usando manipulação de bits para calcular expoentes binários:
A manipulação de bits pode ser usada para melhorar melhor os expoentes inteiros. Para fazer menos multiplicações, pode ser usada uma representação binária de um expoente.
multithreading em java
PowerOfNumber7.java
public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } }
Saída:
2.0 raised to the power of 5 is: 32.0