logo

Imprima os primeiros n números com exatamente dois bits definidos

Dado um número n, imprima primeiro n inteiros positivos com exatamente dois bits definidos em sua representação binária.
Exemplos:

Input: n = 3  
Output: 3 5 6
The first 3 numbers with two set bits are 3 (0011)
5 (0101) and 6 (0110)
Input: n = 5
Output: 3 5 6 9 10 12

UM Solução Simples é considerar todos os números inteiros positivos, um por um, começando em 1. Para cada número, verifique se ele possui exatamente dois conjuntos de bits. Se um número tiver exatamente dois bits definidos, imprima-o e aumente a contagem desses números.
Um Solução Eficiente é gerar diretamente esses números. Se observarmos claramente os números, podemos reescrevê-los conforme mostrado abaixo pow(21)+pow(20) pow(22)+pow(20) pow(22)+pow(21) pow(23)+pow(20) pow(23)+pow(21) pow(23)+pow(22) .........
Todos os números podem ser gerados em ordem crescente de acordo com o maior dos dois bits definidos. A ideia é consertar dois bits mais altos, um por um. Para o bit atual mais alto, considere todos os bits inferiores e imprima os números formados.



C++
// C++ program to print first n numbers // with exactly two set bits #include    using namespace std; // Prints first n numbers with two set bits void printTwoSetBitNums(int n) {  // Initialize higher of two sets bits  int x = 1;  // Keep reducing n for every number  // with two set bits.  while (n > 0)  {  // Consider all lower set bits for  // current higher set bit  int y = 0;  while (y < x)  {  // Print current number  cout << (1 << x) + (1 << y) << ' ';  // If we have found n numbers  n--;  if (n == 0)  return;  // Consider next lower bit for current  // higher bit.  y++;  }  // Increment higher set bit  x++;  } } // Driver code int main() {  printTwoSetBitNums(4);  return 0; } 
Java
// Java program to print first n numbers // with exactly two set bits import java.io.*; class GFG  {  // Function to print first n numbers with two set bits  static void printTwoSetBitNums(int n)  {  // Initialize higher of two sets bits  int x = 1;    // Keep reducing n for every number  // with two set bits  while (n > 0)  {  // Consider all lower set bits for  // current higher set bit  int y = 0;  while (y < x)  {  // Print current number  System.out.print(((1 << x) + (1 << y)) +' ');    // If we have found n numbers  n--;  if (n == 0)  return;    // Consider next lower bit for current  // higher bit.  y++;  }    // Increment higher set bit  x++;  }  }    // Driver program  public static void main (String[] args)   {  int n = 4;  printTwoSetBitNums(n);  } } // This code is contributed by Pramod Kumar 
Python3
# Python3 program to print first n  # numbers with exactly two set bits  # Prints first n numbers  # with two set bits  def printTwoSetBitNums(n) : # Initialize higher of # two sets bits  x = 1 # Keep reducing n for every  # number with two set bits.  while (n > 0) : # Consider all lower set bits  # for current higher set bit  y = 0 while (y < x) : # Print current number  print((1 << x) + (1 << y) end = ' ' ) # If we have found n numbers  n -= 1 if (n == 0) : return # Consider next lower bit  # for current higher bit.  y += 1 # Increment higher set bit  x += 1 # Driver code  printTwoSetBitNums(4) # This code is contributed  # by Smitha 
C#
// C# program to print first n numbers // with exactly two set bits using System; class GFG   {    // Function to print first n  // numbers with two set bits  static void printTwoSetBitNums(int n)  {    // Initialize higher of   // two sets bits  int x = 1;    // Keep reducing n for every  // number with two set bits  while (n > 0)  {    // Consider all lower set bits   // for current higher set bit  int y = 0;  while (y < x)  {    // Print current number  Console.Write(((1 << x) +  (1 << y)) +' ');    // If we have found n numbers  n--;  if (n == 0)  return;    // Consider next lower bit   // for current higher bit.  y++;  }    // Increment higher set bit  x++;  }  }    // Driver program  public static void Main()   {  int n = 4;  printTwoSetBitNums(n);  } }   // This code is contributed by Anant Agarwal. 
JavaScript
<script> // Javascript program to print first n numbers // with exactly two set bits // Prints first n numbers with two set bits function printTwoSetBitNums(n) {  // Initialize higher of two sets bits  let x = 1;  // Keep reducing n for every number  // with two set bits.  while (n > 0)  {    // Consider all lower set bits for  // current higher set bit  let y = 0;  while (y < x)  {    // Print current number  document.write((1 << x) + (1 << y) + ' ');  // If we have found n numbers  n--;  if (n == 0)  return;  // Consider next lower bit for current  // higher bit.  y++;  }  // Increment higher set bit  x++;  } } // Driver code printTwoSetBitNums(4); // This code is contributed by Mayank Tyagi </script> 
PHP
 // PHP program to print  // first n numbers with  // exactly two set bits // Prints first n numbers  // with two set bits function printTwoSetBitNums($n) { // Initialize higher of // two sets bits $x = 1; // Keep reducing n for  // every number with  // two set bits. while ($n > 0) { // Consider all lower set  // bits for current higher  // set bit $y = 0; while ($y < $x) { // Print current number echo (1 << $x) + (1 << $y) ' '; // If we have found n numbers $n--; if ($n == 0) return; // Consider next lower  // bit for current  // higher bit. $y++; } // Increment higher set bit $x++; } } // Driver code printTwoSetBitNums(4); // This code is contributed by Ajit ?> 

Saída :  
 

opa em java
3 5 6 9  


Complexidade de tempo: Sobre)

aprenda selênio

Espaço Auxiliar: O(1)



Abordagem nº 2: usando while e join


A abordagem é partir do inteiro 3 e verificar se o número de bits definidos em sua representação binária é igual a 2 ou não. Se tiver exatamente 2 bits definidos, adicione-o à lista de números com 2 bits definidos até que a lista tenha n elementos.

Algoritmo

1. Inicialize uma lista vazia res para armazenar os inteiros com exatamente dois bits definidos.
2. Inicialize uma variável inteira i com 3.
3. Embora o comprimento da lista res seja menor que n faça o seguinte:
um. Verifique se o número de bits definidos na representação binária de i é igual a 2 ou não usando o método count() da string.
b. Se o número de bits definidos for igual a 2, anexe i à lista res.
c. Aumente i em 1.
4. Retorne a lista res.

falha de segmentação (despejo de núcleo
C++
#include    #include  using namespace std; int countSetBits(int num) {  int count = 0;  while (num > 0) {  count += num & 1;  num >>= 1;  }  return count; } vector<int> numbersWithTwoSetBits(int n) {  vector<int> res;  int i = 3;  while (res.size() < n) {  if (countSetBits(i) == 2) {  res.push_back(i);  }  i++;  }  return res; } int main() {  int n = 3;  vector<int> result = numbersWithTwoSetBits(n);  cout << 'Result: ';  for (int i = 0; i < result.size(); i++) {  cout << result[i] << ' ';  }  cout << endl;  return 0; } 
Java
// Java program for the above approach import java.util.ArrayList; import java.util.List; public class GFG {  // Function to count the number of set bits (binary 1s)  // in an integer  static int countSetBits(int num)  {  int count = 0;  while (num > 0) {  count += num & 1; // Increment count if the last  // bit is set (1)  num >>= 1; // Right shift to check the next bit  }  return count;  }  // Function to generate 'n' numbers with exactly two set  // bits in their binary representation  static List<Integer> numbersWithTwoSetBits(int n)  {  List<Integer> res = new ArrayList<>();  int i = 3; // Start from 3 as the first number with  // two set bits  while (res.size() < n) {  if (countSetBits(i)  == 2) { // Check if the number has exactly  // two set bits  res.add(  i); // Add the number to the result list  }  i++; // Move to the next number  }  return res;  }  public static void main(String[] args)  {  int n = 3; // Number of numbers with two set bits to  // generate  List<Integer> result = numbersWithTwoSetBits(  n); // Get the generated numbers  for (int num : result) {  System.out.print(  num + ' '); // Display the generated numbers  }  System.out.println();  } } // This code is contributed by Susobhan Akhuli 
Python3
def numbersWithTwoSetBits(n): res = [] i = 3 while len(res) < n: if bin(i).count('1') == 2: res.append(i) i += 1 return res n = 3 result = numbersWithTwoSetBits(n) output_string = ' '.join(str(x) for x in result) print(output_string) 
C#
using System; using System.Collections.Generic; class Program {  // Function to count the number of set bits (binary 1s) in an integer  static int CountSetBits(int num)  {  int count = 0;  while (num > 0)  {  count += num & 1; // Increment count if the last bit is set (1)  num >>= 1; // Right shift to check the next bit  }  return count;  }  // Function to generate 'n' numbers with exactly two set bits in their binary representation  static List<int> NumbersWithTwoSetBits(int n)  {  List<int> res = new List<int>();  int i = 3; // Start from 3 as the first number with two set bits  while (res.Count < n)  {  if (CountSetBits(i) == 2) // Check if the number has exactly two set bits  {  res.Add(i); // Add the number to the result list  }  i++; // Move to the next number  }  return res;  }  static void Main(string[] args)  {  int n = 3; // Number of numbers with two set bits to generate  List<int> result = NumbersWithTwoSetBits(n); // Get the generated numbers  Console.Write('Result: ');  foreach (int num in result)  {  Console.Write(num + ' '); // Display the generated numbers  }  Console.WriteLine();  } } 
JavaScript
// Javascript program for the above approach // Function to count the number of set bits (binary 1s) // in an integer function countSetBits(num) {  let count = 0;  while (num > 0) {  count += num & 1; // Increment count if the last  // bit is set (1)  num >>= 1; // Right shift to check the next bit  }  return count; } // Function to generate 'n' numbers with exactly two set // bits in their binary representation function numbersWithTwoSetBits(n) {  let res = [];  let i = 3; // Start from 3 as the first number with  // two set bits  while (res.length < n) {  if (countSetBits(i) === 2) { // Check if the number has exactly  // two set bits  res.push(i); // Add the number to the result list  }  i++; // Move to the next number  }  return res; } // Number of numbers with two set bits to generate let n = 3; // Get the generated numbers let result = numbersWithTwoSetBits(n); // Display the generated numbers console.log(result.join(' ')); // This code is contributed by Susobhan Akhuli 

Saída
3 5 6

Complexidade de tempo: O (n log n) onde n é o número de inteiros com exatamente dois bits definidos. Isso ocorre porque estamos verificando o número de bits definidos na representação binária de cada número inteiro que leva tempo O (log n).



Complexidade do espaço: O(n) onde n é o número de inteiros com exatamente dois bits definidos. Isso ocorre porque estamos armazenando a lista de inteiros com dois bits definidos na memória.