logo

O que é uma estrutura de dados Trie?

A palavra ' Tente 'é um trecho da palavra' recuperação '. Trie é uma estrutura de dados baseada em árvore classificada que armazena o conjunto de strings. Possui o número de ponteiros igual ao número de caracteres do alfabeto em cada nó. Ele pode pesquisar uma palavra no dicionário com a ajuda do prefixo da palavra. Por exemplo, se assumirmos que todas as strings são formadas pelas letras ' a ' para ' Com 'no alfabeto inglês, cada nó trie pode ter no máximo 26 pontos.

o que é hashset java

Trie também é conhecida como árvore digital ou árvore de prefixo. A posição de um nó no Trie determina a chave com a qual esse nó está conectado.

Propriedades do Trie para um conjunto de strings:

  1. O nó raiz do teste sempre representa o nó nulo.
  2. Cada filho de nós é classificado em ordem alfabética.
  3. Cada nó pode ter no máximo 26 crianças (A a Z).
  4. Cada nó (exceto a raiz) pode armazenar uma letra do alfabeto.

O diagrama abaixo mostra uma representação de teste para sino, urso, furo, bastão, bola, parada, estoque e pilha.

Experimente a estrutura de dados

Operações básicas de Trie

Existem três operações no Trie:

  1. Inserção de um nó
  2. Procurando um nó
  3. Exclusão de um nó

Inserção de um nó no Trie

A primeira operação é inserir um novo nó na tentativa. Antes de iniciarmos a implementação, é importante entender alguns pontos:

  1. Cada letra da chave de entrada (palavra) é inserida como um indivíduo no Trie_node. Observe que os filhos apontam para o próximo nível de nós Trie.
  2. A matriz de caracteres-chave atua como um índice de filhos.
  3. Se o nó atual já tiver uma referência à letra atual, defina o nó atual para esse nó referenciado. Caso contrário, crie um novo nó, defina a letra como igual à letra atual e até mesmo inicie o nó atual com este novo nó.
  4. O comprimento do caractere determina a profundidade da tentativa.

Implementação de inserção de um novo nó no Trie

 public class Data_Trie { private Node_Trie root; public Data_Trie(){ this.root = new Node_Trie(); } public void insert(String word){ Node_Trie current = root; int length = word.length(); for (int x = 0; x <length; x++){ char l="word.charAt(x);" node_trie node="current.getNode().get(L);" if (node="=" null){ (); current.getnode().put(l, node); } current="node;" current.setword(true); < pre> <h3>Searching a node in Trie</h3> <p>The second operation is to search for a node in a Trie. The searching operation is similar to the insertion operation. The search operation is used to search a key in the trie. The implementation of the searching operation is shown below.</p> <p>Implementation of search a node in the Trie</p> <pre> class Search_Trie { private Node_Trie Prefix_Search(String W) { Node_Trie node = R; for (int x = 0; x <w.length(); x++) { char curletter="W.charAt(x);" if (node.containskey(curletter)) node="node.get(curLetter);" } else return null; node; public boolean search(string w) node_trie !="null" && node.isend(); < pre> <h3>Deletion of a node in the Trie</h3> <p>The Third operation is the deletion of a node in the Trie. Before we begin the implementation, it is important to understand some points:</p> <ol class="points"> <li>If the key is not found in the trie, the delete operation will stop and exit it.</li> <li>If the key is found in the trie, delete it from the trie.</li> </ol> <p> <strong>Implementation of delete a node in the Trie</strong> </p> <pre> public void Node_delete(String W) { Node_delete(R, W, 0); } private boolean Node_delete(Node_Trie current, String W, int Node_index) { if (Node_index == W.length()) { if (!current.isEndOfWord()) { return false; } current.setEndOfWord(false); return current.getChildren().isEmpty(); } char A = W.charAt(Node_index); Node_Trie node = current.getChildren().get(A); if (node == null) { return false; } boolean Current_Node_Delete = Node_delete(node, W, Node_index + 1) &amp;&amp; !node.isEndOfWord(); if (Current_Node_Delete) { current.getChildren().remove(A); return current.getChildren().isEmpty(); } return false; } </pre> <h2>Applications of Trie</h2> <p> <strong>1. Spell Checker</strong> </p> <p>Spell checking is a three-step process. First, look for that word in a dictionary, generate possible suggestions, and then sort the suggestion words with the desired word at the top.</p> <p>Trie is used to store the word in dictionaries. The spell checker can easily be applied in the most efficient way by searching for words on a data structure. Using trie not only makes it easy to see the word in the dictionary, but it is also simple to build an algorithm to include a collection of relevant words or suggestions.</p> <p> <strong>2. Auto-complete</strong> </p> <p>Auto-complete functionality is widely used on text editors, mobile applications, and the Internet. It provides a simple way to find an alternative word to complete the word for the following reasons.</p> <ul> <li>It provides an alphabetical filter of entries by the key of the node.</li> <li>We trace pointers only to get the node that represents the string entered by the user.</li> <li>As soon as you start typing, it tries to complete your input.</li> </ul> <p> <strong>3. Browser history</strong> </p> <p>It is also used to complete the URL in the browser. The browser keeps a history of the URLs of the websites you&apos;ve visited.</p> <h2>Advantages of Trie</h2> <ol class="points"> <li>It can be insert faster and search the string than hash tables and binary search trees.</li> <li>It provides an alphabetical filter of entries by the key of the node.</li> </ol> <h2>Disadvantages of Trie</h2> <ol class="points"> <li>It requires more memory to store the strings.</li> <li>It is slower than the hash table.</li> </ol> <h2>Complete program in C++</h2> <pre> #include #include #include #define N 26 typedef struct TrieNode TrieNode; struct TrieNode { char info; TrieNode* child[N]; int data; }; TrieNode* trie_make(char info) { TrieNode* node = (TrieNode*) calloc (1, sizeof(TrieNode)); for (int i = 0; i <n; i++) node → child[i]="NULL;" data="0;" info="info;" return node; } void free_trienode(trienode* node) { for(int i="0;" < n; if (node !="NULL)" free_trienode(node child[i]); else continue; free(node); trie loop start trienode* trie_insert(trienode* flag, char* word) temp="flag;" for (int word[i] ; int idx="(int)" - 'a'; (temp child[idx]="=" null) child[idx]; }trie flag; search_trie(trienode* position="word[i]" child[position]="=" 0; child[position]; && 1) 1; check_divergence(trienode* len="strlen(word);" (len="=" 0) last_index="0;" len; child[position]) j="0;" <n; j++) (j child[j]) + break; last_index; find_longest_prefix(trienode* (!word || word[0]="=" '') null; longest_prefix="(char*)" calloc 1, sizeof(char)); longest_prefix[i]="word[i];" longest_prefix[len]="" branch_idx="check_divergence(flag," longest_prefix) (branch_idx>= 0) { longest_prefix[branch_idx] = &apos;&apos;; longest_prefix = (char*) realloc (longest_prefix, (branch_idx + 1) * sizeof(char)); } return longest_prefix; } int data_node(TrieNode* flag, char* word) { TrieNode* temp = flag; for (int i = 0; word[i]; i++) { int position = (int) word[i] - &apos;a&apos;; if (temp &#x2192; child[position]) { temp = temp &#x2192; child[position]; } } return temp &#x2192; data; } TrieNode* trie_delete(TrieNode* flag, char* word) { if (!flag) return NULL; if (!word || word[0] == &apos;&apos;) return flag; if (!data_node(flag, word)) { return flag; } TrieNode* temp = flag; char* longest_prefix = find_longest_prefix(flag, word); if (longest_prefix[0] == &apos;&apos;) { free(longest_prefix); return flag; } int i; for (i = 0; longest_prefix[i] != &apos;&apos;; i++) { int position = (int) longest_prefix[i] - &apos;a&apos;; if (temp &#x2192; child[position] != NULL) { temp = temp &#x2192; child[position]; } else { free(longest_prefix); return flag; } } int len = strlen(word); for (; i <len; i++) { int position="(int)" word[i] - 'a'; if (temp → child[position]) trienode* rm_node="temp&#x2192;child[position];" temp child[position]="NULL;" free_trienode(rm_node); } free(longest_prefix); return flag; void print_trie(trienode* flag) (!flag) return; printf('%c ', temp→info); for (int i="0;" < n; print_trie(temp child[i]); search(trienode* flag, char* word) printf('search the word %s: word); (search_trie(flag, 0) printf('not found
'); else printf('found!
'); main() flag="trie_make(&apos;&apos;);" 'oh'); 'way'); 'bag'); 'can'); search(flag, 'ohh'); 'ways'); print_trie(flag); printf('
'); printf('deleting 'hello'...
'); 'can'...
'); free_trienode(flag); 0; pre> <p> <strong>Output</strong> </p> <pre> Search the word ohh: Not Found Search the word bag: Found! Search the word can: Found! Search the word ways: Not Found Search the word way: Found! &#x2192; h &#x2192; e &#x2192; l &#x2192; l &#x2192; o &#x2192; w &#x2192; a &#x2192; y &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g &#x2192; c &#x2192; a &#x2192; n deleting the word &apos;hello&apos;... &#x2192; w &#x2192; a &#x2192; y &#x2192; h &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g &#x2192; c &#x2192; a &#x2192; n deleting the word &apos;can&apos;... &#x2192; w &#x2192; a &#x2192; y &#x2192; h &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g </pre> <hr></len;></n;></pre></w.length();></pre></length;>

Aplicações de Trie

1. Corretor ortográfico

A verificação ortográfica é um processo de três etapas. Primeiro, procure essa palavra em um dicionário, gere sugestões possíveis e, em seguida, classifique as palavras sugeridas com a palavra desejada no topo.

java revertendo uma string

Trie é usado para armazenar a palavra em dicionários. O corretor ortográfico pode ser facilmente aplicado da maneira mais eficiente, pesquisando palavras em uma estrutura de dados. Usar try não apenas facilita a visualização da palavra no dicionário, mas também é simples de construir um algoritmo para incluir uma coleção de palavras ou sugestões relevantes.

2. Preenchimento automático

tipos de loop for

A funcionalidade de preenchimento automático é amplamente utilizada em editores de texto, aplicativos móveis e na Internet. Ele fornece uma maneira simples de encontrar uma palavra alternativa para completar a palavra pelos seguintes motivos.

  • Ele fornece um filtro alfabético de entradas pela chave do nó.
  • Rastreamos ponteiros apenas para obter o nó que representa a string inserida pelo usuário.
  • Assim que você começa a digitar, ele tenta completar sua entrada.

3. Histórico do navegador

Também é usado para completar a URL no navegador. O navegador mantém um histórico dos URLs dos sites que você visitou.

Vantagens do teste

  1. Ele pode ser inserido mais rápido e pesquisar a string do que tabelas hash e árvores de pesquisa binária.
  2. Ele fornece um filtro alfabético de entradas pela chave do nó.

Desvantagens do teste

  1. Requer mais memória para armazenar as strings.
  2. É mais lento que a tabela hash.

Programa completo em C++

 #include #include #include #define N 26 typedef struct TrieNode TrieNode; struct TrieNode { char info; TrieNode* child[N]; int data; }; TrieNode* trie_make(char info) { TrieNode* node = (TrieNode*) calloc (1, sizeof(TrieNode)); for (int i = 0; i <n; i++) node → child[i]="NULL;" data="0;" info="info;" return node; } void free_trienode(trienode* node) { for(int i="0;" < n; if (node !="NULL)" free_trienode(node child[i]); else continue; free(node); trie loop start trienode* trie_insert(trienode* flag, char* word) temp="flag;" for (int word[i] ; int idx="(int)" - \'a\'; (temp child[idx]="=" null) child[idx]; }trie flag; search_trie(trienode* position="word[i]" child[position]="=" 0; child[position]; && 1) 1; check_divergence(trienode* len="strlen(word);" (len="=" 0) last_index="0;" len; child[position]) j="0;" <n; j++) (j child[j]) + break; last_index; find_longest_prefix(trienode* (!word || word[0]="=" \'\') null; longest_prefix="(char*)" calloc 1, sizeof(char)); longest_prefix[i]="word[i];" longest_prefix[len]="" branch_idx="check_divergence(flag," longest_prefix) (branch_idx>= 0) { longest_prefix[branch_idx] = &apos;&apos;; longest_prefix = (char*) realloc (longest_prefix, (branch_idx + 1) * sizeof(char)); } return longest_prefix; } int data_node(TrieNode* flag, char* word) { TrieNode* temp = flag; for (int i = 0; word[i]; i++) { int position = (int) word[i] - &apos;a&apos;; if (temp &#x2192; child[position]) { temp = temp &#x2192; child[position]; } } return temp &#x2192; data; } TrieNode* trie_delete(TrieNode* flag, char* word) { if (!flag) return NULL; if (!word || word[0] == &apos;&apos;) return flag; if (!data_node(flag, word)) { return flag; } TrieNode* temp = flag; char* longest_prefix = find_longest_prefix(flag, word); if (longest_prefix[0] == &apos;&apos;) { free(longest_prefix); return flag; } int i; for (i = 0; longest_prefix[i] != &apos;&apos;; i++) { int position = (int) longest_prefix[i] - &apos;a&apos;; if (temp &#x2192; child[position] != NULL) { temp = temp &#x2192; child[position]; } else { free(longest_prefix); return flag; } } int len = strlen(word); for (; i <len; i++) { int position="(int)" word[i] - \'a\'; if (temp → child[position]) trienode* rm_node="temp&#x2192;child[position];" temp child[position]="NULL;" free_trienode(rm_node); } free(longest_prefix); return flag; void print_trie(trienode* flag) (!flag) return; printf(\'%c \', temp→info); for (int i="0;" < n; print_trie(temp child[i]); search(trienode* flag, char* word) printf(\'search the word %s: word); (search_trie(flag, 0) printf(\'not found
\'); else printf(\'found!
\'); main() flag="trie_make(&apos;&apos;);" \'oh\'); \'way\'); \'bag\'); \'can\'); search(flag, \'ohh\'); \'ways\'); print_trie(flag); printf(\'
\'); printf(\'deleting \'hello\'...
\'); \'can\'...
\'); free_trienode(flag); 0; pre> <p> <strong>Output</strong> </p> <pre> Search the word ohh: Not Found Search the word bag: Found! Search the word can: Found! Search the word ways: Not Found Search the word way: Found! &#x2192; h &#x2192; e &#x2192; l &#x2192; l &#x2192; o &#x2192; w &#x2192; a &#x2192; y &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g &#x2192; c &#x2192; a &#x2192; n deleting the word &apos;hello&apos;... &#x2192; w &#x2192; a &#x2192; y &#x2192; h &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g &#x2192; c &#x2192; a &#x2192; n deleting the word &apos;can&apos;... &#x2192; w &#x2192; a &#x2192; y &#x2192; h &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g </pre> <hr></len;></n;>