logo

Espelhos máximos que podem transferir luz de baixo para a direita

É fornecida uma matriz quadrada em que cada célula representa um espaço em branco ou um obstáculo. Podemos colocar espelhos na posição em branco. Todos os espelhos estarão situados a 45 graus, ou seja, eles podem transferir luz de baixo para a direita se não houver nenhum obstáculo em seu caminho. 

Nesta questão, precisamos de contar quantos desses espelhos podem ser colocados numa matriz quadrada que pode transferir luz de baixo para a direita. 

Exemplos: 



Output for above example is 2. In above diagram mirror at (3 1) and (5 5) are able to send light from bottom to right so total possible mirror count is 2.

Podemos resolver este problema verificando a posição de tais espelhos na matriz: o espelho que pode transferir luz de baixo para a direita não terá nenhum obstáculo em seu caminho, ou seja, 
se um espelho existe no índice (i j), então 
não haverá obstáculo no índice (k j) para todo k i< k <= N 
não haverá obstáculo no índice (i k) para todo k j< k <= N 
Tendo em mente as duas equações acima, podemos encontrar o obstáculo mais à direita em cada linha em uma iteração de determinada matriz e podemos encontrar o obstáculo mais inferior em cada coluna em outra iteração de determinada matriz. Depois de armazenar esses índices em um array separado, podemos verificar em cada índice se ele não satisfaz nenhuma condição de obstáculo e então aumentar a contagem de acordo. 

tutoriais java

Abaixo está a solução implementada no conceito acima, que requer tempo O(N^2) e espaço extra O(N).

C++
// C++ program to find how many mirror can transfer // light from bottom to right #include    using namespace std; // method returns number of mirror which can transfer // light from bottom to right int maximumMirrorInMatrix(string mat[] int N) {  // To store first obstacles horizontally (from right)  // and vertically (from bottom)  int horizontal[N] vertical[N];  // initialize both array as -1 signifying no obstacle  memset(horizontal -1 sizeof(horizontal));  memset(vertical -1 sizeof(vertical));  // looping matrix to mark column for obstacles  for (int i=0; i<N; i++)  {  for (int j=N-1; j>=0; j--)  {  if (mat[i][j] == 'B')  continue;  // mark rightmost column with obstacle  horizontal[i] = j;  break;  }  }  // looping matrix to mark rows for obstacles  for (int j=0; j<N; j++)  {  for (int i=N-1; i>=0; i--)  {  if (mat[i][j] == 'B')  continue;  // mark leftmost row with obstacle  vertical[j] = i;  break;  }  }  int res = 0; // Initialize result  // if there is not obstacle on right or below  // then mirror can be placed to transfer light  for (int i = 0; i < N; i++)  {  for (int j = 0; j < N; j++)  {  /* if i > vertical[j] then light can from bottom  if j > horizontal[i] then light can go to right */  if (i > vertical[j] && j > horizontal[i])  {  /* uncomment this code to print actual mirror  position also  cout << i << ' ' << j << endl; */  res++;  }  }  }  return res; } // Driver code to test above method int main() {  int N = 5;  // B - Blank O - Obstacle  string mat[N] = {'BBOBB'  'BBBBO'  'BBBBB'  'BOOBO'  'BBBOB'  };  cout << maximumMirrorInMatrix(mat N) << endl;  return 0; } 
Java
// Java program to find how many mirror can transfer // light from bottom to right import java.util.*; class GFG  {  // method returns number of mirror which can transfer  // light from bottom to right  static int maximumMirrorInMatrix(String mat[] int N)   {  // To store first obstacles horizontally (from right)  // and vertically (from bottom)  int[] horizontal = new int[N];  int[] vertical = new int[N];  // initialize both array as -1 signifying no obstacle  Arrays.fill(horizontal -1);  Arrays.fill(vertical -1);    // looping matrix to mark column for obstacles  for (int i = 0; i < N; i++)   {  for (int j = N - 1; j >= 0; j--)   {  if (mat[i].charAt(j) == 'B')  {  continue;  }  // mark rightmost column with obstacle  horizontal[i] = j;  break;  }  }  // looping matrix to mark rows for obstacles  for (int j = 0; j < N; j++)   {  for (int i = N - 1; i >= 0; i--)   {  if (mat[i].charAt(j) == 'B')   {  continue;  }  // mark leftmost row with obstacle  vertical[j] = i;  break;  }  }  int res = 0; // Initialize result  // if there is not obstacle on right or below  // then mirror can be placed to transfer light  for (int i = 0; i < N; i++)  {  for (int j = 0; j < N; j++)   {  /* if i > vertical[j] then light can from bottom  if j > horizontal[i] then light can go to right */  if (i > vertical[j] && j > horizontal[i])  {  /* uncomment this code to print actual mirror  position also  cout << i << ' ' << j << endl; */  res++;  }  }  }  return res;  } // Driver code public static void main(String[] args)  {  int N = 5;  // B - Blank O - Obstacle  String mat[] = {'BBOBB'  'BBBBO'  'BBBBB'  'BOOBO'  'BBBOB'  };  System.out.println(maximumMirrorInMatrix(mat N)); } } /* This code is contributed by PrinciRaj1992 */ 
Python3
# Python3 program to find how many mirror can transfer # light from bottom to right # method returns number of mirror which can transfer # light from bottom to right def maximumMirrorInMatrix(mat N): # To store first obstacles horizontally (from right) # and vertically (from bottom) horizontal = [-1 for i in range(N)] vertical = [-1 for i in range(N)]; # looping matrix to mark column for obstacles for i in range(N): for j in range(N - 1 -1 -1): if (mat[i][j] == 'B'): continue; # mark rightmost column with obstacle horizontal[i] = j; break; # looping matrix to mark rows for obstacles for j in range(N): for i in range(N - 1 -1 -1): if (mat[i][j] == 'B'): continue; # mark leftmost row with obstacle vertical[j] = i; break; res = 0; # Initialize result # if there is not obstacle on right or below # then mirror can be placed to transfer light for i in range(N): for j in range(N):    ''' if i > vertical[j] then light can from bottom  if j > horizontal[i] then light can go to right ''' if (i > vertical[j] and j > horizontal[i]):    ''' uncomment this code to print actual mirror  position also''' res+=1; return res; # Driver code to test above method N = 5; # B - Blank O - Obstacle mat = ['BBOBB' 'BBBBO' 'BBBBB' 'BOOBO' 'BBBOB' ]; print(maximumMirrorInMatrix(mat N)); # This code is contributed by rutvik_56. 
C#
// C# program to find how many mirror can transfer // light from bottom to right using System;   class GFG  {  // method returns number of mirror which can transfer  // light from bottom to right  static int maximumMirrorInMatrix(String []mat int N)   {  // To store first obstacles horizontally (from right)  // and vertically (from bottom)  int[] horizontal = new int[N];  int[] vertical = new int[N];  // initialize both array as -1 signifying no obstacle  for (int i = 0; i < N; i++)   {  horizontal[i]=-1;  vertical[i]=-1;  }    // looping matrix to mark column for obstacles  for (int i = 0; i < N; i++)   {  for (int j = N - 1; j >= 0; j--)   {  if (mat[i][j] == 'B')  {  continue;  }  // mark rightmost column with obstacle  horizontal[i] = j;  break;  }  }  // looping matrix to mark rows for obstacles  for (int j = 0; j < N; j++)   {  for (int i = N - 1; i >= 0; i--)   {  if (mat[i][j] == 'B')   {  continue;  }  // mark leftmost row with obstacle  vertical[j] = i;  break;  }  }  int res = 0; // Initialize result  // if there is not obstacle on right or below  // then mirror can be placed to transfer light  for (int i = 0; i < N; i++)  {  for (int j = 0; j < N; j++)   {  /* if i > vertical[j] then light can from bottom  if j > horizontal[i] then light can go to right */  if (i > vertical[j] && j > horizontal[i])  {  /* uncomment this code to print actual mirror  position also  cout << i << ' ' << j << endl; */  res++;  }  }  }  return res;  } // Driver code public static void Main(String[] args)  {  int N = 5;  // B - Blank O - Obstacle  String []mat = {'BBOBB'  'BBBBO'  'BBBBB'  'BOOBO'  'BBBOB'  };  Console.WriteLine(maximumMirrorInMatrix(mat N)); } } // This code is contributed by Princi Singh 
JavaScript
<script> // JavaScript program to find how many mirror can transfer // light from bottom to right // method returns number of mirror which can transfer // light from bottom to right function maximumMirrorInMatrix(mat N)  {  // To store first obstacles horizontally (from right)  // and vertically (from bottom)  var horizontal = Array(N).fill(-1);  var vertical = Array(N).fill(-1);    // looping matrix to mark column for obstacles  for (var i = 0; i < N; i++)   {  for (var j = N - 1; j >= 0; j--)   {  if (mat[i][j] == 'B')  {  continue;  }  // mark rightmost column with obstacle  horizontal[i] = j;  break;  }  }  // looping matrix to mark rows for obstacles  for (var j = 0; j < N; j++)   {  for (var i = N - 1; i >= 0; i--)   {  if (mat[i][j] == 'B')   {  continue;  }  // mark leftmost row with obstacle  vertical[j] = i;  break;  }  }  var res = 0; // Initialize result  // if there is not obstacle on right or below  // then mirror can be placed to transfer light  for (var i = 0; i < N; i++)  {  for (var j = 0; j < N; j++)   {  /* if i > vertical[j] then light can from bottom  if j > horizontal[i] then light can go to right */  if (i > vertical[j] && j > horizontal[i])  {  /* uncomment this code to print actual mirror  position also  cout << i << ' ' << j << endl; */  res++;  }  }  }  return res; } // Driver code var N = 5; // B - Blank O - Obstacle var mat = ['BBOBB'  'BBBBO'  'BBBBB'  'BOOBO'  'BBBOB' ]; document.write(maximumMirrorInMatrix(mat N)); </script>  

Saída
2 

Complexidade de tempo: O (n2).
Espaço Auxiliar: O(n)