
Dado uma matriz inteira 2D arr [] [] de ordem k * n onde está cada linha classificado em ordem crescente. Sua tarefa é encontrar o menor alcance que inclui pelo menos um elemento de cada um dos K listas. Se mais de um desses intervalos forem encontrados, retorne o primeiro.
Exemplos:
Entrada: arr [] = [[4 7 9 12 15]
[0 8 10 14 20]
[6 12 16 30 50]]
Saída: 6 8
Explicação: O menor intervalo é formado pelo número 7 da primeira lista 8 da segunda lista e 6 da terceira lista.Entrada: arr [] [] = [[2 4]
[1 7]
[20 40]]
Saída: 4 20
Explicação: O intervalo [4 20] contém 4 7 20, que contém elemento de todas as três matrizes.
Tabela de conteúdo
- [Abordagem ingênua] - Usando K Pontenters - O (n k^2) tempo e o (k) espaço
- [Abordagem melhor] usando dois ponteiros - o (n*k log (n*k)) tempo e o (n*k) espaço
- [Abordagem eficiente] - Usando o tempo Min Heap - O (N K Log K) e O (k)
[Abordagem ingênua] - Usando K Pontenters - O (n k^2) tempo e o (k) espaço
A idéia é manter K ponteiros um para cada lista começando no índice 0. Em cada etapa, tome o min e max dos elementos K atuais para formar um intervalo. Para minimizar o intervalo devemos Aumente o valor mínimo Como não podemos diminuir o máximo (todos os ponteiros começam em 0). Então mova o ponteiro da lista que tem o Mínimo atual e atualize o intervalo. Repita até que uma lista esteja esgotada.
Implementação passo a passo:
- Crie uma lista de ponteiros um para cada lista de entrada, tudo começando no índice 0.
- Repita o processo Até que um dos ponteiros chegue ao final de sua lista.
- A cada passo Escolha os elementos atuais apontado por todos os ponteiros.
- Encontre o Mínimo e máximo entre esses elementos.
- Calcule o intervalo usando os valores MIN e MAX.
- Se esse intervalo for menor do que a melhor atualização anterior da resposta.
- Avance o ponteiro da lista que tinha o elemento mínimo.
- Pare quando qualquer lista estiver esgotada e retorne o melhor alcance encontrado.
// C++ program to find the smallest range // that includes at least one element from // each of the k sorted lists using k pointers #include #include #include using namespace std; vector<int> findSmallestRange(vector<vector<int>>& arr) { int k = arr.size(); int n = arr[0].size(); // Pointers for each of the k rows vector<int> ptr(k 0); int minRange = INT_MAX; int start = -1 end = -1; while (true) { int minVal = INT_MAX; int maxVal = INT_MIN; int minRow = -1; // Traverse all k rows to get current min and max for (int i = 0; i < k; i++) { // If any list is exhausted stop the loop if (ptr[i] == n) { return {start end}; } // Track min value and its row index if (arr[i][ptr[i]] < minVal) { minVal = arr[i][ptr[i]]; minRow = i; } // Track current max value if (arr[i][ptr[i]] > maxVal) { maxVal = arr[i][ptr[i]]; } } // Update the result range if a // smaller range is found if (maxVal - minVal < minRange) { minRange = maxVal - minVal; start = minVal; end = maxVal; } // Move the pointer of the // row with minimum value ptr[minRow]++; } return {start end}; } int main() { vector<vector<int>> arr = { {4 7 9 12 15} {0 8 10 14 20} {6 12 16 30 50} }; vector<int> res = findSmallestRange(arr); cout << res[0] << ' ' << res[1]; return 0; }
Java // Java program to find the smallest range import java.util.*; class GfG{ static ArrayList<Integer> findSmallestRange(int[][] arr) { int k = arr.length; int n = arr[0].length; // Pointers for each of the k rows int[] ptr = new int[k]; int minRange = Integer.MAX_VALUE; int start = -1 end = -1; while (true) { int minVal = Integer.MAX_VALUE; int maxVal = Integer.MIN_VALUE; int minRow = -1; // Traverse all k rows to get current min and max for (int i = 0; i < k; i++) { // If any list is exhausted stop the loop if (ptr[i] == n) { ArrayList<Integer> result = new ArrayList<>(); result.add(start); result.add(end); return result; } // Track min value and its row index if (arr[i][ptr[i]] < minVal) { minVal = arr[i][ptr[i]]; minRow = i; } // Track current max value if (arr[i][ptr[i]] > maxVal) { maxVal = arr[i][ptr[i]]; } } // Update the result range if a smaller range is found if (maxVal - minVal < minRange) { minRange = maxVal - minVal; start = minVal; end = maxVal; } // Move the pointer of the row with minimum value ptr[minRow]++; } } public static void main(String[] args) { int[][] arr = { {4 7 9 12 15} {0 8 10 14 20} {6 12 16 30 50} }; ArrayList<Integer> res = findSmallestRange(arr); System.out.println(res.get(0) + ' ' + res.get(1)); } }
Python # Python program to find the smallest range def findSmallestRange(arr): k = len(arr) n = len(arr[0]) # Pointers for each of the k rows ptr = [0] * k min_range = float('inf') start = -1 end = -1 while True: min_val = float('inf') max_val = float('-inf') min_row = -1 # Traverse all k rows to get current min and max for i in range(k): # If any list is exhausted stop the loop if ptr[i] == n: return [start end] # Track min value and its row index if arr[i][ptr[i]] < min_val: min_val = arr[i][ptr[i]] min_row = i # Track current max value if arr[i][ptr[i]] > max_val: max_val = arr[i][ptr[i]] # Update the result range if a smaller range is found if max_val - min_val < min_range: min_range = max_val - min_val start = min_val end = max_val # Move the pointer of the row with minimum value ptr[min_row] += 1 if __name__ == '__main__': arr = [ [4 7 9 12 15] [0 8 10 14 20] [6 12 16 30 50] ] res = findSmallestRange(arr) print(res[0] res[1])
C# using System; using System.Collections.Generic; class GfG{ static List<int> findSmallestRange(int[] arr) { int k = arr.GetLength(0); int n = arr.GetLength(1); // Pointers for each of the k rows int[] ptr = new int[k]; int minRange = int.MaxValue; int start = -1 end = -1; while (true) { int minVal = int.MaxValue; int maxVal = int.MinValue; int minRow = -1; // Traverse all k rows to get current min and max for (int i = 0; i < k; i++) { // If any list is exhausted stop the loop if (ptr[i] == n) { return new List<int> { start end }; } int current = arr[i ptr[i]]; if (current < minVal) { minVal = current; minRow = i; } if (current > maxVal) { maxVal = current; } } // Update the result range if a smaller range is found if (maxVal - minVal < minRange) { minRange = maxVal - minVal; start = minVal; end = maxVal; } // Move the pointer of the row with minimum value ptr[minRow]++; } } public static void Main(string[] args) { int[] arr = { { 4 7 9 12 15 } { 0 8 10 14 20 } { 6 12 16 30 50 } }; List<int> res = findSmallestRange(arr); Console.WriteLine(res[0] + ' ' + res[1]); } }
JavaScript // JavaScript program to find the smallest range function findSmallestRange(arr) { let k = arr.length; let n = arr[0].length; // Pointers for each of the k rows let ptr = new Array(k).fill(0); let minRange = Infinity; let start = -1 end = -1; while (true) { let minVal = Infinity; let maxVal = -Infinity; let minRow = -1; // Traverse all k rows to get current min and max for (let i = 0; i < k; i++) { // If any list is exhausted stop the loop if (ptr[i] === n) { return [start end]; } // Track min value and its row index if (arr[i][ptr[i]] < minVal) { minVal = arr[i][ptr[i]]; minRow = i; } // Track current max value if (arr[i][ptr[i]] > maxVal) { maxVal = arr[i][ptr[i]]; } } // Update the result range if a smaller range is found if (maxVal - minVal < minRange) { minRange = maxVal - minVal; start = minVal; end = maxVal; } // Move the pointer of the row with minimum value ptr[minRow]++; } } const arr = [ [4 7 9 12 15] [0 8 10 14 20] [6 12 16 30 50] ]; const res = findSmallestRange(arr); console.log(res[0] + ' ' + res[1]);
Saída
6 8
[Abordagem melhor] usando dois ponteiros - o (n*k log (n*k)) tempo e o (n*k) espaço
C++A idéia é encontrar o menor problema de alcance, transformando -o em um problema de janela deslizante em uma lista mesclada e classificada de todos os elementos das listas de entrada. Cada elemento é armazenado junto com seu índice de lista original para rastrear sua fonte. Depois de classificar a lista combinada por valor dois ponteiros (
left
eright
) são usados para definir uma janela que se move pela lista. À medida que a janela expande um mapa de frequência rastreia quantas listas exclusivas são representadas. Quando a janela inclui pelo menos um número de cada lista, o algoritmo tenta encolhê -lo da esquerda para encontrar um intervalo válido menor. O menor intervalo encontrado durante esse processo é retornado como resultado.
#include using namespace std; vector<int> findSmallestRange(vector<vector<int>>& arr) { int k = arr.size(); // Stores the current index for each list vector<int> pointers(k 0); // Stores the current smallest range vector<int> smallestRange = {0 INT_MAX}; while (true) { int currentMin = INT_MAX currentMax = INT_MIN; int minListIndex = -1; // Find the minimum and maximum among current elements of all lists for (int i = 0; i < k; i++) { int value = arr[i][pointers[i]]; if (value < currentMin) { currentMin = value; minListIndex = i; } if (value > currentMax) { currentMax = value; } } // Update the smallest range if this one is smaller if (currentMax - currentMin < smallestRange[1] - smallestRange[0]) { smallestRange[0] = currentMin; smallestRange[1] = currentMax; } // Move the pointer in the list that had the minimum value pointers[minListIndex]++; // If that list is exhausted break the loop if (pointers[minListIndex] == arr[minListIndex].size()) break; } return smallestRange; } // Driver code int main() { vector<vector<int>> arr = { {4 7 9 12 15} {0 8 10 14 20} {6 12 16 30 50} }; vector<int> result = findSmallestRange(arr); cout << result[0] << ' ' << result[1]; return 0; }
Java import java.util.*; class GfG { // Function to find the smallest range public static ArrayList<Integer> findSmallestRange(int[][] arr) { int k = arr.length; // Number of lists // Stores the current index for each list int[] pointers = new int[k]; // Stores the current smallest range ArrayList<Integer> smallestRange = new ArrayList<> (Arrays.asList(0 Integer.MAX_VALUE)); // Continue the loop until one list is exhausted while (true) { int currentMin = Integer.MAX_VALUE currentMax = Integer.MIN_VALUE; int minListIndex = -1; // Find the minimum and maximum among current elements of all lists for (int i = 0; i < k; i++) { int value = arr[i][pointers[i]]; // Update the current minimum if (value < currentMin) { currentMin = value; minListIndex = i; } // Update the current maximum if (value > currentMax) { currentMax = value; } } // Update the smallest range if this one is smaller if (currentMax - currentMin < smallestRange.get(1) - smallestRange.get(0)) { smallestRange.set(0 currentMin); smallestRange.set(1 currentMax); } // Move the pointer in the list that had the minimum value pointers[minListIndex]++; // If that list is exhausted break the loop if (pointers[minListIndex] == arr[minListIndex].length) break; } return smallestRange; // Return the result as ArrayList } // Driver code public static void main(String[] args) { int[][] arr = { {4 7 9 12 15} {0 8 10 14 20} {6 12 16 30 50} }; ArrayList<Integer> result = findSmallestRange(arr); System.out.println(result.get(0) + ' ' + result.get(1)); } }
Python def findSmallestRange(arr): k = len(arr) # Number of lists # Stores the current index for each list pointers = [0] * k # Stores the current smallest range smallestRange = [0 float('inf')] # Continue the loop until one list is exhausted while True: currentMin = float('inf') currentMax = -float('inf') minListIndex = -1 # Find the minimum and maximum among current elements of all lists for i in range(k): value = arr[i][pointers[i]] # Update the current minimum if value < currentMin: currentMin = value minListIndex = i # Update the current maximum if value > currentMax: currentMax = value # Update the smallest range if this one is smaller if currentMax - currentMin < smallestRange[1] - smallestRange[0]: smallestRange[0] = currentMin smallestRange[1] = currentMax # Move the pointer in the list that had the minimum value pointers[minListIndex] += 1 # If that list is exhausted break the loop if pointers[minListIndex] == len(arr[minListIndex]): break return smallestRange # Return the result as a list # Driver code if __name__ == '__main__': arr = [ [4 7 9 12 15] [0 8 10 14 20] [6 12 16 30 50] ] result = findSmallestRange(arr) print(result[0] result[1])
C# using System; using System.Collections.Generic; class GfG{ // Function to find the smallest range public static List<int> findSmallestRange(int[] arr) { int k = arr.GetLength(0); // Number of lists (rows) // Stores the current index for each list (row) int[] pointers = new int[k]; // Stores the current smallest range List<int> smallestRange = new List<int> { 0 int.MaxValue }; // Continue the loop until one list is exhausted while (true) { int currentMin = int.MaxValue currentMax = int.MinValue; int minListIndex = -1; // Find the minimum and maximum among current elements // of all lists for (int i = 0; i < k; i++) { int value = arr[i pointers[i]]; // Update the current minimum if (value < currentMin) { currentMin = value; minListIndex = i; } // Update the current maximum if (value > currentMax) { currentMax = value; } } // Update the smallest range if this one is smaller if (currentMax - currentMin < smallestRange[1] - smallestRange[0]) { smallestRange[0] = currentMin; smallestRange[1] = currentMax; } // Move the pointer in the list that had the minimum value pointers[minListIndex]++; // If that list is exhausted break the loop if (pointers[minListIndex] == arr.GetLength(1)) break; } return smallestRange; // Return the result as List } // Driver code public static void Main(string[] args) { int[] arr = { {4 7 9 12 15} {0 8 10 14 20} {6 12 16 30 50} }; List<int> result = findSmallestRange(arr); Console.WriteLine(result[0] + ' ' + result[1]); } }
JavaScript function findSmallestRange(arr) { const k = arr.length; // Number of lists // Stores the current index for each list let pointers = new Array(k).fill(0); // Stores the current smallest range let smallestRange = [0 Number.MAX_VALUE]; // Continue the loop until one list is exhausted while (true) { let currentMin = Number.MAX_VALUE currentMax = -Number.MAX_VALUE; let minListIndex = -1; // Find the minimum and maximum among current elements of all lists for (let i = 0; i < k; i++) { const value = arr[i][pointers[i]]; // Update the current minimum if (value < currentMin) { currentMin = value; minListIndex = i; } // Update the current maximum if (value > currentMax) { currentMax = value; } } // Update the smallest range if this one is smaller if (currentMax - currentMin < smallestRange[1] - smallestRange[0]) { smallestRange[0] = currentMin; smallestRange[1] = currentMax; } // Move the pointer in the list that had the minimum value pointers[minListIndex]++; // If that list is exhausted break the loop if (pointers[minListIndex] === arr[minListIndex].length) break; } return smallestRange; // Return the result as an array } // Driver code const arr = [ [4 7 9 12 15] [0 8 10 14 20] [6 12 16 30 50] ]; const result = findSmallestRange(arr); console.log(result[0] result[1]);
Saída
6 8
[Abordagem eficiente] - Usando o tempo Min Heap - O (N K Log K) e O (k)
Min-heap Pode ser usado para encontrar o valor mínimo no tempo logarítmico ou no registro K, em vez do tempo linear. Para encontrar o valor máximo, inicializamos o valor máximo de todos os 0 índices inicialmente. Para o restante dos valores máximos no loop, simplesmente comparamos o valor máximo atual com o próximo item da lista da qual o Min Item está sendo removido. O restante da abordagem permanece o mesmo.
Implementação passo a passo:
- Min-heap Pode ser usado para encontrar o valor mínimo no tempo logarítmico ou no registro K, em vez do tempo linear. Para encontrar o valor máximo, inicializamos o valor máximo de todos os 0 índices inicialmente. Para o restante dos valores máximos no loop, simplesmente comparamos o valor máximo atual com o próximo item da lista da qual o Min Item está sendo removido. O restante da abordagem permanece o mesmo.
Crie um min-heap para armazenar K elementos um de cada matriz e uma variável minrange inicializado com um valor máximo e também mantenha uma variável máx Para armazenar o número inteiro máximo.
- Min-heap Pode ser usado para encontrar o valor mínimo no tempo logarítmico ou no registro K, em vez do tempo linear. Para encontrar o valor máximo, inicializamos o valor máximo de todos os 0 índices inicialmente. Para o restante dos valores máximos no loop, simplesmente comparamos o valor máximo atual com o próximo item da lista da qual o Min Item está sendo removido. O restante da abordagem permanece o mesmo.
Inicialmente coloque o primeiro elemento de cada lista e armazene o valor máximo em máx .
- Min-heap Pode ser usado para encontrar o valor mínimo no tempo logarítmico ou no registro K, em vez do tempo linear. Para encontrar o valor máximo, inicializamos o valor máximo de todos os 0 índices inicialmente. Para o restante dos valores máximos no loop, simplesmente comparamos o valor máximo atual com o próximo item da lista da qual o Min Item está sendo removido. O restante da abordagem permanece o mesmo.
Repita as etapas a seguir até que pelo menos uma lista escapasse:
- Encontre o valor mínimo ou min Use a parte superior ou raiz da pilha min, que é o elemento mínimo.
- Agora atualize o minrange Se o atual (max-min) for menor que minrange .
- Remova o elemento superior ou raiz da fila de prioridade Insira o próximo elemento da lista que contém o elemento min
- Atualize o máximo com o novo elemento inserido se o novo elemento for maior que o máximo anterior.
C++
Java #include
Python import java.util.*; // Class to represent elements in the heap class Node implements Comparable<Node> { int val row col; Node(int val int row int col) { this.val = val; this.row = row; this.col = col; } // For min-heap based on value public int compareTo(Node other) { return this.val - other.val; } } class GfG { // Function to find the smallest range static ArrayList<Integer> findSmallestRange(int[][] arr) { int k = arr.length; int n = arr[0].length; PriorityQueue<Node> pq = new PriorityQueue<>(); int maxVal = Integer.MIN_VALUE; // Push the first element of each list into the min-heap for (int i = 0; i < k; i++) { pq.add(new Node(arr[i][0] i 0)); maxVal = Math.max(maxVal arr[i][0]); } int minRange = Integer.MAX_VALUE minEl = -1 maxEl = -1; while (true) { Node curr = pq.poll(); int minVal = curr.val; // Update range if better if (maxVal - minVal < minRange) { minRange = maxVal - minVal; minEl = minVal; maxEl = maxVal; } // If we've reached the end of a list break if (curr.col + 1 == n) break; // Push next element from the same list int nextVal = arr[curr.row][curr.col + 1]; pq.add(new Node(nextVal curr.row curr.col + 1)); maxVal = Math.max(maxVal nextVal); } // Return result as ArrayList ArrayList<Integer> result = new ArrayList<>(); result.add(minEl); result.add(maxEl); return result; } // Driver code public static void main(String[] args) { int[][] arr = { {4 7 9 12 15} {0 8 10 14 20} {6 12 16 30 50} }; ArrayList<Integer> res = findSmallestRange(arr); System.out.println(res.get(0) + ' ' + res.get(1)); } }
C# import heapq # Function to find the smallest range def findSmallestRange(arr): k = len(arr) n = len(arr[0]) heap = [] maxVal = float('-inf') # Push the first element of each # list into the min-heap for i in range(k): heapq.heappush(heap (arr[i][0] i 0)) maxVal = max(maxVal arr[i][0]) minRange = float('inf') minEl = maxEl = -1 while True: minVal row col = heapq.heappop(heap) # Update range if better if maxVal - minVal < minRange: minRange = maxVal - minVal minEl = minVal maxEl = maxVal # If we've reached the end of a list break if col + 1 == n: break # Push next element from the same list nextVal = arr[row][col + 1] heapq.heappush(heap (nextVal row col + 1)) maxVal = max(maxVal nextVal) return [minEl maxEl] # Driver code if __name__ == '__main__': arr = [ [4 7 9 12 15] [0 8 10 14 20] [6 12 16 30 50] ] res = findSmallestRange(arr) print(res[0] res[1])
JavaScript using System; using System.Collections.Generic; // Class to represent elements in the heap class Node : IComparable<Node> { public int val row col; public Node(int val int row int col) { this.val = val; this.row = row; this.col = col; } // For min-heap based on value public int CompareTo(Node other) { if (this.val != other.val) return this.val.CompareTo(other.val); // To avoid duplicate keys in SortedSet if (this.row != other.row) return this.row.CompareTo(other.row); return this.col.CompareTo(other.col); } } class GfG { // Function to find the smallest range static List<int> findSmallestRange(int[] arr) { int k = arr.GetLength(0); int n = arr.GetLength(1); var pq = new SortedSet<Node>(); int maxVal = int.MinValue; // Push the first element of each list into the min-heap for (int i = 0; i < k; i++) { var node = new Node(arr[i 0] i 0); pq.Add(node); maxVal = Math.Max(maxVal arr[i 0]); } int minRange = int.MaxValue minEl = -1 maxEl = -1; while (true) { var curr = GetMin(pq); pq.Remove(curr); int minVal = curr.val; // Update range if better if (maxVal - minVal < minRange) { minRange = maxVal - minVal; minEl = minVal; maxEl = maxVal; } // If we've reached the end of a list break if (curr.col + 1 == n) break; // Push next element from the same list int nextVal = arr[curr.row curr.col + 1]; var nextNode = new Node(nextVal curr.row curr.col + 1); pq.Add(nextNode); maxVal = Math.Max(maxVal nextVal); } return new List<int> { minEl maxEl }; // Return result as List
class Node { constructor(val row col) { this.val = val; this.row = row; this.col = col; } } // Function to find the smallest range function findSmallestRange(arr) { const k = arr.length; const n = arr[0].length; const heap = new MinHeap(); let maxVal = -Infinity; // Push the first element of each list into the min-heap for (let i = 0; i < k; i++) { heap.push(new Node(arr[i][0] i 0)); maxVal = Math.max(maxVal arr[i][0]); } let minRange = Infinity; let minEl = -1 maxEl = -1; while (true) { const curr = heap.pop(); const minVal = curr.val; // Update range if better if (maxVal - minVal < minRange) { minRange = maxVal - minVal; minEl = minVal; maxEl = maxVal; } // If we've reached the end of a list break if (curr.col + 1 === n) break; // Push next element from the same list const nextVal = arr[curr.row][curr.col + 1]; heap.push(new Node(nextVal curr.row curr.col + 1)); maxVal = Math.max(maxVal nextVal); } return [minEl maxEl]; } // Min-heap comparator class MinHeap { constructor() { this.heap = []; } push(node) { this.heap.push(node); this._heapifyUp(); } pop() { if (this.size() === 1) return this.heap.pop(); const top = this.heap[0]; this.heap[0] = this.heap.pop(); this._heapifyDown(); return top; } top() { return this.heap[0]; } size() { return this.heap.length; } _heapifyUp() { let idx = this.size() - 1; while (idx > 0) { let parent = Math.floor((idx - 1) / 2); if (this.heap[parent].val <= this.heap[idx].val) break; [this.heap[parent] this.heap[idx]] = [this.heap[idx] this.heap[parent]]; idx = parent; } } _heapifyDown() { let idx = 0; const n = this.size(); while (true) { let left = 2 * idx + 1; let right = 2 * idx + 2; let smallest = idx; if (left < n && this.heap[left].val < this.heap[smallest].val) { smallest = left; } if (right < n && this.heap[right].val < this.heap[smallest].val) { smallest = right; } if (smallest === idx) break; [this.heap[smallest] this.heap[idx]] = [this.heap[idx] this.heap[smallest]]; idx = smallest; } } } // Driver code const arr = [ [4 7 9 12 15] [0 8 10 14 20] [6 12 16 30 50] ]; const res = findSmallestRange(arr); console.log(res[0] + ' ' + res[1]);
Saída
6 8